138 research outputs found

    Discrete seasonal hydroclimate reconstructions over northern Vietnam for the past three and a half centuries

    Get PDF
    We present a 350-year hydroclimatic year (HY) index for northern Vietnam derived from three discrete seasonal reconstructions from tree rings: an index of autumn rainfall from the earlywood widths of Chinese Douglas fir (Pseudotsuga sinensis), the first such record from this species, and two nearby published Palmer Drought Severity Index (PDSI) reconstructions from cypress (Fokienia hodginsii) tree rings for spring and summer, respectively. Autumn rainfall over the study region constitutes only around 9% of the annual total, but its variability is strongly linked to the strength of the atmospheric gradient over Asia during the transition from the boreal summer to winter monsoons. Deficit or surplus of autumn rainfall enhances or mitigates, respectively, the impact of the annual winter dry season on trees growing on porous karst hillsides. The most protracted HY drought (dry across all seasons) occurred at the turn of the twentieth century at a time of relative quiet, but a mid-to-late eighteenth century multi-year HY drought coincided with a period of great societal turmoil across mainland Southeast Asia and the Tay Son Rebellion in northern Vietnam. A mid-nineteenth century uprising accompanied by a smallpox epidemic, crop failure and famine, occurred during the worst autumn drought of the past two and a half centuries but only moderate drought in spring and summer. The “Great Vietnamese Famine” of the mid-twentieth century was dry only in autumn, with a wet spring and an average summer

    Association of Estimated Glomerular Filtration Rate and Urinary Uromodulin Concentrations with Rare Variants Identified by UMOD Gene Region Sequencing

    Get PDF
    Background: Recent genome-wide association studies (GWAS) have identified common variants in the UMOD region associated with kidney function and disease in the general population. To identify novel rare variants as well as common variants that may account for this GWAS signal, the exons and 4 kb upstream region of UMOD were sequenced. Methodology/Principal Findings Individuals (n = 485) were selected based on presence of the GWAS risk haplotype and chronic kidney disease (CKD) in the ARIC Study and on the extremes of of the UMOD gene product, uromodulin, in urine (Tamm Horsfall protein, THP) in the Framingham Heart Study (FHS). Targeted sequencing was conducted using capillary based Sanger sequencing (3730 DNA Analyzer). Variants were tested for association with THP concentrations and estimated glomerular filtration rate (eGFR), and identified non-synonymous coding variants were genotyped in up to 22,546 follow-up samples. Twenty-four and 63 variants were identified in the 285 ARIC and 200 FHS participants, respectively. In both studies combined, there were 33 common and 54 rare (MAF<0.05) variants. Five non-synonymous rare variants were identified in FHS; borderline enrichment of rare variants was found in the extremes of THP (SKAT p-value = 0.08). Only V458L was associated with THP in the FHS general-population validation sample (p = 9*103^{−3}, n = 2,522), but did not show direction-consistent and significant association with eGFR in both the ARIC (n = 14,635) and FHS (n = 7,520) validation samples. Pooling all non-synonymous rare variants except V458L together showed non-significant associations with THP and eGFR in the FHS validation sample. Functional studies of V458L revealed no alternations in protein trafficking. Conclusions/Significance: Multiple novel rare variants in the UMOD region were identified, but none were consistently associated with eGFR in two independent study samples. Only V458L had modest association with THP levels in the general population and thus could not account for the observed GWAS signal

    Microarray-Based Oncogenic Pathway Profiling in Advanced Serous Papillary Ovarian Carcinoma

    Get PDF
    Introduction: The identification of specific targets for treatment of ovarian cancer patients remains a challenge. The objective of this study is the analysis of oncogenic pathways in ovarian cancer and their relation with clinical outcome. Methodology: A meta-analysis of 6 gene expression datasets was done for oncogenic pathway activation scores: AKT, β-Catenin, BRCA, E2F1, EGFR, ER, HER2, INFα, INFγ, MYC, p53, p63, PI3K, PR, RAS, SRC, STAT3, TNFα, and TGFβ and VEGF-A. Advanced serous papillary tumours from uniformly treated patients were selected (N = 464) to find differences independent from stage-, histology- and treatment biases. Survival and correlations with documented prognostic signatures (wound healing response signature WHR/genomic grade index GGI/invasiveness gene signature IGS) were analysed. Results: The GGI, WHR, IGS score were unexpectedly increased in chemosensitive versus chemoresistant patients. PR and RAS activation scor

    Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Get PDF
    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases

    TSP-1 Secreted by Bone Marrow Stromal Cells Contributes to Retinal Ganglion Cell Neurite Outgrowth and Survival

    Get PDF
    BACKGROUND: Bone marrow stromal cells (BMSCs) are pluripotent and thereby a potential candidate for cell replacement therapy for central nervous system degenerative disorders and traumatic injury. However, the mechanism of their differentiation and effect on neural tissues has not been fully elucidated. This study evaluates the effect of BMSCs on neural cell growth and survival in a retinal ganglion cell (RGCs) model by assessing the effect of changes in the expression of a BMSC-secreted protein, thrombospondin-1 (TSP-1), as a putative mechanistic agent acting on RGCs. METHODS AND FINDINGS: The effect of co-culturing BMSCs and RGCs in vitro was evaluated by measuring the following parameters: neurite outgrowth, RGC survival, BMSC neural-like differentiation, and the effect of TSP-1 on both cell lines under basal secretion conditions and when TSP-1 expression was inhibited. Our data show that BMSCs improved RGC survival and neurite outgrowth. Synaptophysin, MAP-2, and TGF-beta expression are up-regulated in RGCs co-cultured with BMSCs. Interestingly, the BMSCs progressively displayed neural-like morphology over the seven-day study period. Restriction display polymerase chain reaction (RD-PCR) was performed to screen for differentially expressed genes in BMSCs cultured alone or co-cultured with RGCs. TSP-1, a multifactorial extracellular matrix protein, is critically important in the formation of neural connections during development, so its function in our co-culture model was investigated by small interfering RNA (siRNA) transfection. When TSP-1 expression was decreased with siRNA silencing, BMSCs had no impact on RGC survival, but reduced neurite outgrowth and decreased expression of synaptophysin, MAP-2 and TGF-beta in RGCs. Furthermore, the number of BMSCs with neural-like characteristics was significantly decreased by more than two-fold using siRNA silencing. CONCLUSIONS: Our data suggest that the TSP-1 signaling pathway might have an important role in neural-like differentiation in BMSCs and neurite outgrowth in RGCs. This study provides new insights into the potential reparative mechanisms of neural cell repair

    Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

    Full text link

    Audiotactile interactions in temporal perception

    Full text link
    corecore