11,564 research outputs found

    Correlating Bq0μ+μB_q^0 \to \mu^+\mu^- and KLπ0ννˉK_L \to \pi^0\nu\bar\nu Decays with Four Generations

    Get PDF
    The long-awaited Bsμ+μB_s\to \mu^+\mu^- mode has finally been observed at rate consistent with Standard Model, albeit lower by 1.2σ\sigma. There is some hint for New Physics in the rarer Bd0μ+μB_d^0 \to \mu^+\mu^- decay, especially if the currently 2.2σ\sigma-enhanced central value persists with more data. The measurement of CPCP violating phase ϕs\phi_s, via both BsJ/ψKKˉB_s\to J/\psi K\bar K and J/ψππJ/\psi\pi\pi modes, has reached Standard Model sensitivity. These measurements stand major improvement when LHC enters Run 2. Concurrently, the KLπ0ννˉK_L\to\pi^0\nu\bar\nu and K+π+ννˉK^+\to\pi^+\nu\bar\nu modes are being pursued in a similar time frame. We illustrate the possible correlations between New Physics effects in these four modes, using the fourth generation as example. While correlations may or may not exist in other New Physics models, the four generation model can accommodate enhancements in both Bd0μ+μB_d^0 \to \mu^+\mu^- and KLπ0ννˉK_L\to\pi^0\nu\bar\nu.Comment: 9 pages, 5 figures for V1; for V2 title modified, minor changes performed to figures, part of contents revised to 7 pages, note added, one of the authors' affiliation changed, accepted for the publication of PL

    Measuring the Fourth Generation b --> s Quadrangle at the LHC

    Full text link
    We show that simultaneous precision measurement of the CP-violating phase in time-dependent Bs --> J/psi phi study and the Bs --> mu+ mu- rate, together with measuring m_t' by direct search at the LHC, would determine V_{t's}^*V_{t'b} and therefore the b --> s quadrangle in the four-generation standard model. The forward-backward asymmetry in B --> K* l+ l- provides further discrimination.Comment: 6 pages, 7 figures, revised based on LHC results released in this summer, to appear in PR

    The protection project of Hanyuan Hall and Linde Hall of the Daming Palace

    Get PDF
    AbstractThis paper expounds the consideration to the design of protection and exhibition of Hanyuan Hall and Linde Hall of the Daming Palace. Based on in-depth study on their existing conditions after archeological excavation, and in combination with comprehensive considerations in terms of the protection of the main body of sites, the restoration research of existing bases and superstructures, the requirement of site open exhibition, etc., it proposes the design to restore the rammed earth bases by surrounding them with bricks and stones or rammed earth. Besides the protection and exhibition of the site of Hanyuan Hall bases, it also integrates the features of landform there to design the protection and exhibition of brick and tile kiln of Tang Dynasty within the relic area. Under the condition at that time, a semi-underground small exhibition center is designed by taking advantage of the height difference of base side slopes, satisfying the requirement of exhibition, and meanwhile preserving the overall landscape of the site. The integration of the design of protection project with archeology as well as the science and technology of heritage preservation is a brand-new probe into site protection design

    Semi-Cycled Generative Adversarial Networks for Real-World Face Super-Resolution

    Full text link
    Real-world face super-resolution (SR) is a highly ill-posed image restoration task. The fully-cycled Cycle-GAN architecture is widely employed to achieve promising performance on face SR, but prone to produce artifacts upon challenging cases in real-world scenarios, since joint participation in the same degradation branch will impact final performance due to huge domain gap between real-world and synthetic LR ones obtained by generators. To better exploit the powerful generative capability of GAN for real-world face SR, in this paper, we establish two independent degradation branches in the forward and backward cycle-consistent reconstruction processes, respectively, while the two processes share the same restoration branch. Our Semi-Cycled Generative Adversarial Networks (SCGAN) is able to alleviate the adverse effects of the domain gap between the real-world LR face images and the synthetic LR ones, and to achieve accurate and robust face SR performance by the shared restoration branch regularized by both the forward and backward cycle-consistent learning processes. Experiments on two synthetic and two real-world datasets demonstrate that, our SCGAN outperforms the state-of-the-art methods on recovering the face structures/details and quantitative metrics for real-world face SR. The code will be publicly released at https://github.com/HaoHou-98/SCGAN

    Structural investigation on GexSb10Se90−x glasses using x-ray photoelectron spectra

    No full text
    The structure of GeₓSb₁₀Se₉₀ˍₓ glasses (x = 7.5, 10, 15, 20, 25, 27.5, 30, and 32.5 at. %) has been investigated by x-ray photoelectron spectroscopy (XPS). Different structural units have been extracted and characterized by decomposing XPS core level spectra, the evolution of the relative concentration of each structural unit indicates that, the relative contributions of Se-trimers and Se-Se-Ge(Sb) structure decrease with increasing Ge content until they become zero at chemically stoichiometric glasses of Ge₂₅Sb₁₀Se₆₅, and then the homopolar bonds like Ge-Ge and Sb-Sb begin to appear in the spectra. Increase of homopolar bonds will extend band-tails into the gap and narrow the optical band gap. Thus, the glass with a stoichiometric composition generally has fewer defective bonds and larger optical bandgap
    corecore