7,594 research outputs found

    The structure of f(R)f(R)-brane model

    Get PDF
    Recently, a family of interesting analytical brane solutions were found in f(R)f(R) gravity with f(R)=R+αR2f(R)=R+\alpha R^2 in Ref. [Phys. Lett. B 729, 127 (2014)]. In these solutions, inner brane structure can be turned on by tuning the value of the parameter α\alpha. In this paper, we investigate how the parameter α\alpha affects the localization and the quasilocalization of the tensorial gravitons around these solutions. It is found that, in a range of α\alpha, despite the brane has an inner structure, there is no graviton resonance. However, in some other regions of the parameter space, although the brane has no internal structure, the effective potential for the graviton KK modes has a singular structure, and there exists a series of graviton resonant modes. The contribution of the massive graviton KK modes to the Newton's law of gravity is discussed shortly.Comment: v2: 10 pages, 8 figures, to be published in EPJ

    Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation

    Full text link
    Previous studies have shown that leveraging domain index can significantly boost domain adaptation performance (arXiv:2007.01807, arXiv:2202.03628). However, such domain indices are not always available. To address this challenge, we first provide a formal definition of domain index from the probabilistic perspective, and then propose an adversarial variational Bayesian framework that infers domain indices from multi-domain data, thereby providing additional insight on domain relations and improving domain adaptation performance. Our theoretical analysis shows that our adversarial variational Bayesian framework finds the optimal domain index at equilibrium. Empirical results on both synthetic and real data verify that our model can produce interpretable domain indices which enable us to achieve superior performance compared to state-of-the-art domain adaptation methods. Code is available at https://github.com/Wang-ML-Lab/VDI.Comment: ICLR 2023 Spotlight (notable-top-25%

    Multiband Printed Loop Mobile Phone Antenna for LTE/WWAN/GNSS Application

    Get PDF
    A multiband printed loop mobile phone antenna for LTE/WWAN/GNSS application is presented. It covers seven communication bands (VSWR < 3) and GNSS band (VSWR < 1.5). The so-called GNSS (global navigation satellite system) band includes COMPASS, GALILEO, GPS, and GLONASS. From the analysis of the structure, the coupled-fed antenna mainly consists of three parts: the feeding strip, shorted strip, and U-shaped parasitic coupling strip. The proposed antenna works in three resonant modes, respectively, at 860 MHz (0.25λ), 1620 MHz (0.5λ), and 2620 MHz (1λ). A solution is provided, by which the navigation antenna can be integrated into the communication main antenna to save space. The antenna not only can work in GSM850/900/1800/1900/UMTS2100/LTE2300/2500 bands but also covers the world’s four major navigation systems. Moreover, the proposed antenna can be easily printed on the circuit board without loading any lumped element and only occupies a small volume of 18 × 32 × 3 mm3, which is suitable for smartphone application. In addition, the redundant design of multinavigation system is quite favorable for the elimination of errors or shadow area caused by single navigation system, especially for outdoor investigation, national security, and so on

    FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation

    Full text link
    We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.Comment: EMNLP 2018. The first four authors contribute equally. The order is determined by dice rolling. Visit our website http://zhuhao.me/fewre

    Half Metallic Bilayer Graphene

    Get PDF
    Charge neutral bilayer graphene has a gapped ground state as transport experiments demonstrate. One of the plausible such ground states is layered antiferromagnetic spin density wave (LAF) state, where the spins in top and bottom layers have same magnitude with opposite directions. We propose that lightly charged bilayer graphene in an electric field perpendicular to the graphene plane may be a half metal as a consequence of the inversion and particle-hole symmetry broken in the LAF state. We show this explicitly by using a mean field theory on a 2-layer Hubbard model for the bilayer graphene.Comment: 4+ pages, 4 figure
    • …
    corecore