43,360 research outputs found

    An Alarm System For Segmentation Algorithm Based On Shape Model

    Full text link
    It is usually hard for a learning system to predict correctly on rare events that never occur in the training data, and there is no exception for segmentation algorithms. Meanwhile, manual inspection of each case to locate the failures becomes infeasible due to the trend of large data scale and limited human resource. Therefore, we build an alarm system that will set off alerts when the segmentation result is possibly unsatisfactory, assuming no corresponding ground truth mask is provided. One plausible solution is to project the segmentation results into a low dimensional feature space; then learn classifiers/regressors to predict their qualities. Motivated by this, in this paper, we learn a feature space using the shape information which is a strong prior shared among different datasets and robust to the appearance variation of input data.The shape feature is captured using a Variational Auto-Encoder (VAE) network that trained with only the ground truth masks. During testing, the segmentation results with bad shapes shall not fit the shape prior well, resulting in large loss values. Thus, the VAE is able to evaluate the quality of segmentation result on unseen data, without using ground truth. Finally, we learn a regressor in the one-dimensional feature space to predict the qualities of segmentation results. Our alarm system is evaluated on several recent state-of-art segmentation algorithms for 3D medical segmentation tasks. Compared with other standard quality assessment methods, our system consistently provides more reliable prediction on the qualities of segmentation results.Comment: Accepted to ICCV 2019 (10 pages, 4 figures

    Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule

    Full text link
    In this paper, a likelihood based evidence acquisition approach is proposed to acquire evidence from experts'assessments as recorded in historical datasets. Then a data-driven evidential reasoning rule based model is introduced to R&D project selection process by combining multiple pieces of evidence with different weights and reliabilities. As a result, the total belief degrees and the overall performance can be generated for ranking and selecting projects. Finally, a case study on the R&D project selection for the National Science Foundation of China is conducted to show the effectiveness of the proposed model. The data-driven evidential reasoning rule based model for project evaluation and selection (1) utilizes experimental data to represent experts' assessments by using belief distributions over the set of final funding outcomes, and through this historic statistics it helps experts and applicants to understand the funding probability to a given assessment grade, (2) implies the mapping relationships between the evaluation grades and the final funding outcomes by using historical data, and (3) provides a way to make fair decisions by taking experts' reliabilities into account. In the data-driven evidential reasoning rule based model, experts play different roles in accordance with their reliabilities which are determined by their previous review track records, and the selection process is made interpretable and fairer. The newly proposed model reduces the time-consuming panel review work for both managers and experts, and significantly improves the efficiency and quality of project selection process. Although the model is demonstrated for project selection in the NSFC, it can be generalized to other funding agencies or industries.Comment: 20 pages, forthcoming in International Journal of Project Management (2019

    Insignificant shadow detection for video segmentation

    Get PDF
    To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance

    Analysis of Pseudo-Random Number Generators in QMC-SSE Method

    Full text link
    In the quantum Monte Carlo (QMC) method, the Pseudo-Random Number Generator (PRNG) plays a crucial role in determining the computation time. However, the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process. Here, we systematically analyze the performance of the different PRNGs on the widely used QMC method -- stochastic series expansion (SSE) algorithm. To quantitatively compare them, we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms. After testing several representative observables of the Heisenberg model in one and two dimensions, we recommend using LCG as the best choice of PRNGs. Our work can not only help improve the performance of the SSE method but also shed light on the other Markov-chain-based numerical algorithms.Comment: 5 pages, 1 figure, almost published version, comments are welcome and more information at http://cqutp.org/users/xfzhang
    • 

    corecore