48,027 research outputs found

    Hashing based Answer Selection

    Full text link
    Answer selection is an important subtask of question answering (QA), where deep models usually achieve better performance. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance

    Thermal Timescale Mass Transfer Rates in Intermediate-Mass X-ray Binaries

    Full text link
    Thermal timescale mass transfer generally occurs in close binaries where the donor star is more massive than the accreting star. The mass transfer rates are usually estimated in terms of the Kelvin-Helmholtz timescale of the donor star. But recent investigations indicate that this method may overestimate the real mass transfer rates in accreting white dwarf or neutron star binary systems. We have systematically investigated the thermal-timescale mass transfer processes in intermediate-mass X-ray binaries, by calculating binary evolution sequences with various initial donor masses and orbital periods. From the calculated results we find that on average the mass transfer rates are lower than traditional estimates by a factor of ∼4\sim 4.Comment: 13 pages, 4 figures, and 2 tables, accepted for publication in A&

    Possible evidence that pulsars are quark stars

    Full text link
    It is a pity that the real state of matter in pulsar-like stars is still not determined confidently because of the uncertainty about cold matter at supranuclear density, even 40 years after the discovery of pulsar. Nuclear matter (related to neutron stars) is one of the speculations for the inner constitution of pulsars even from the Landau's time more than 70 years ago, but quark matter (related to quark stars) is an alternative due to the fact of asymptotic freedom of interaction between quarks as the standard model of particle physics develops since 1960s. Therefore, one has to focus on astrophysical observations in order to answer what the nature of pulsars is. In this presentation, I would like to summarize possible observational evidence/hints that pulsar-like stars could be quark stars, and to address achievable clear evidence for quark stars in the future experiments.Comment: 6 pages, 2 figures; a talk at the international conference "Astrophysics of Compact Objects" (July 1-7, 2007; Huangshan, China); http://vega.bac.pku.edu.cn/rxxu/publications/index_C.htm. A mistake in Fig.1 is corrected; Correction of typo
    • …
    corecore