960 research outputs found

    Resolution Tests of CsI(Tl) Scintillators Read Out by Pin Diodes

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    IMF Emission in the 14-N + nat-Ag, Au Reactions at E/A = 60-100 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    The influence of cluster emission and the symmetry energy on neutron-proton spectral double ratios

    Get PDF
    Emissions of free neutrons and protons from the central collisions of 124Sn+124Sn and 112Sn+112Sn reactions are simulated using the Improved Quantum Molecular Dynamics model with two different density dependence of the symmetry energy in the nuclear equation of state. The constructed double ratios of the neutron to proton ratios of the two reaction systems are found to be sensitive to the symmetry terms in the EOS. The effect of cluster formation is examined and found to affect the double ratios mainly in the low energy region. In order to extract better information on symmetry energy with transport models, it is therefore important to have accurate data in the high energy region which also is affected minimally by sequential decays.Comment: 11 pages, 4 figure

    Pazopanib for the Treatment of Patients with Advanced Renal Cell Carcinoma

    Get PDF
    Dramatic advances in the care of patients with advanced renal cell carcinoma have occurred over the last ten years, including insights into the molecular pathogenesis of this disease, that have now been translated into paradigm-changing therapeutic strategies. Elucidating the importance of signaling cascades related to angiogenesis is notable among these achievements. Pazopanib is a novel small molecule tyrosine kinase inhibitor that targets VEGFR-1, -2, and -3; PDGFR-α, PDGFR-β; and c-kit tyrosine kinases. This agent exhibits a distinct pharmacokinetic profile as well as toxicity profile compared to other agents in the class of VEGF signaling pathway inhibitors. This review will discuss the scientific rationale for the development of pazopanib, as well as preclinical and clinical trials that led to approval of pazopanib for patients with advanced renal cell carcinoma. The most recent information, including data from 2010 national meeting of the American Society of Clinical Oncology, and the design of ongoing Phase III trials, will be discussed. Finally, an algorithm utilizing Level I evidence for the treatment of patients with this disease will be proposed

    Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition

    Get PDF
    BH3-mimetics are a new class of anti-cancer drugs that inhibit anti-apoptotic Bcl-2 proteins. In doing so, BH3-mimetics sensitise to cell death. Venetoclax is a potent, BCL-2 selective BH3-mimetic that is clinically approved for use in chronic lymphocytic leukaemia. Venetoclax has also been shown to inhibit mitochondrial metabolism, this is consistent with a proposed role for BCL-2 in metabolic regulation. We used venetoclax to understand BCL-2 metabolic function. Similar to others, we found that venetoclax inhibited mitochondrial respiration. In addition, we also found that venetoclax impairs TCA cycle activity leading to activation of reductive carboxylation. Importantly, the metabolic effects of venetoclax were independent of cell death because they were also observed in apoptosis-resistant BAX/BAK-deficient cells. However, unlike venetoclax treatment, inhibiting BCL-2 expression had no effect on mitochondrial respiration. Unexpectedly, we found that venetoclax also inhibited mitochondrial respiration and the TCA cycle in BCL-2 deficient cells and in cells lacking all anti-apoptotic BCL-2 family members. Investigating the basis of this off-target effect, we found that venetoclax-induced metabolic reprogramming was dependent upon the integrated stress response and ATF4 transcription factor. These data demonstrate that venetoclax affects cellular metabolism independent of BCL-2 inhibition. This off-target metabolic effect has potential to modulate venetoclax cytotoxicity

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Two-Particle Correlation Functions for the 200-MeV 3-He + Ag Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum

    Full text link
    This manuscript explores the apparent discrepancy between experimental data and theoretical calculations of the lattice resistance of bcc tantalum. We present the first results for the temperature dependence of the Peierls stress in this system and the first ab initio calculation of the zero-temperature Peierls stress to employ periodic boundary conditions, which are those best suited to the study of metallic systems at the electron-structure level. Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental lattice resistance to zero-temperature. Although we do find that the common techniques for such extrapolation indeed tend to underestimate the zero-temperature limit, the amount of the underestimation which we observe is only 10-20%, leaving open the possibility that mechanisms other than the simple Peierls stress are important in controlling the process of low temperature slip.Comment: 12 pages and 9 figure

    Black Hole Entropy: From Shannon to Bekenstein

    Full text link
    In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed [8]) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of [5]. Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.Comment: 9 pages Latex, Comments are welcome; Thoroughly revised version, reference and acknowledgements sections enlarged, numerical error in final result corrected, no major changes, to appear in IJT

    Supermassive Binaries and Extragalactic Jets

    Get PDF
    Some quasars show Doppler shifted broad emission line peaks. I give new statistics of the occurrence of these peaks and show that, while the most spectacular cases are in quasars with strong radio jets inclined to the line of sight, they are also almost as common in radio-quiet quasars. Theories of the origin of the peaks are reviewed and it is argued that the displaced peaks are most likely produced by the supermassive binary model. The separations of the peaks in the 3C 390.3-type objects are consistent with orientation-dependent "unified models" of quasar activity. If the supermassive binary model is correct, all members of "the jet set" (astrophysical objects showing jets) could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see http://www.aas.org/ApJ/v464n2/5736/5736.html
    corecore