120 research outputs found

    Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point

    Full text link
    The most intriguing properties of non-Hermitian systems are found near the exceptional points (EPs) at which the Hamiltonian matrix becomes defective. Due to the complex topological structure of the energy Riemann surfaces close to an EP and the breakdown of the adiabatic theorem due to non-Hermiticity, the state evolution in non-Hermitian systems is much more complex than that in Hermitian systems. For example, recent experimental work [Doppler et al. Nature 537, 76 (2016)] demonstrated that dynamically encircling an EP can lead to chiral behaviors, i.e., encircling an EP in different directions results in different output states. Here, we propose a coupled ferromagnetic waveguide system that carries two EPs and design an experimental setup in which the trajectory of state evolution can be controlled in situ using a tunable external field, allowing us to dynamically encircle zero, one or even two EPs experimentally. The tunability allows us to control the trajectory of encircling in the parameter space, including the size of the encircling loop and the starting/end point. We discovered that whether or not the dynamics is chiral actually depends on the starting point of the loop. In particular, dynamically encircling an EP with a starting point in the parity-time-broken phase results in non-chiral behaviors such that the output state is the same no matter which direction the encircling takes. The proposed system is a useful platform to explore the topology of energy surfaces and the dynamics of state evolution in non-Hermitian systems and will likely find applications in mode switching controlled with external parameters.Comment: 15 pages, 11 figure

    MBTFNet: Multi-Band Temporal-Frequency Neural Network For Singing Voice Enhancement

    Full text link
    A typical neural speech enhancement (SE) approach mainly handles speech and noise mixtures, which is not optimal for singing voice enhancement scenarios. Music source separation (MSS) models treat vocals and various accompaniment components equally, which may reduce performance compared to the model that only considers vocal enhancement. In this paper, we propose a novel multi-band temporal-frequency neural network (MBTFNet) for singing voice enhancement, which particularly removes background music, noise and even backing vocals from singing recordings. MBTFNet combines inter and intra-band modeling for better processing of full-band signals. Dual-path modeling are introduced to expand the receptive field of the model. We propose an implicit personalized enhancement (IPE) stage based on signal-to-noise ratio (SNR) estimation, which further improves the performance of MBTFNet. Experiments show that our proposed model significantly outperforms several state-of-the-art SE and MSS models

    Effect of Ultrasonic Surface Rolling Process on Surface Properties and Microstructure of 6061 Aluminum Alloy

    Get PDF
    Nano-surface layers were prepared on the surface of 6061 aluminum alloy using the ultrasonic surface rolling process (USRP). The surface morphology, surface roughness, microstructure, hardness, and corrosion resistance of 6061 aluminum alloy were systematically characterized using X-ray diffraction (XRD), laser scanning confocal microscopy (LSCM), optical microscope(OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and other testing methods. The results showed that ultrasonic surface rolling strengthening did not change the surface phase composition of 6061 aluminum alloy. It changed the size of the surface phases and the distance between the phases while refining the surface grains. The static pressures has a great influence on the surface properties of 6061 aluminum alloy. The best surface properties were obtained under 500N static pressures. The surface hardness reached 129.5HV0.5, the surface morphology was flat and continuous, the surface roughness was reduced to Ra0.191μm, and the corrosion resistance was significantly improved

    Rootstock Alleviates Salt Stress in Grafted Mulberry Seedlings: Physiological and PSII Function Responses

    Get PDF
    This study investigated the effect of NaCl stress on Na+ and K+ absorption and transport by roots, nitrogen and phosphorus content in leaves, PSII photochemical activity and reactive oxygen species (ROS) in leaves of mulberry own-root seedlings and grafted seedlings. To determine the response, own-root seedlings of a high yielding mulberry cultivar, Tieba mulberry (Morus alba L.), and the grafted seedlings, obtained by using Qinglong mulberry with high salt tolerance as rootstock and Tieba mulberry as scion, were used. The Na+ content in roots and leaves of grafted seedlings was significantly lower than that in own-root seedlings under salt stress; while K+ content in roots and leaves of grafted seedlings was significantly higher than that in own-root seedlings. The root activity in grafted seedlings was significantly higher than that in own-root seedlings, as well as the content of nitrogen, phosphorous and water. PSII photochemical activity in leaves of grafted seedlings was less significantly affected by salt stress compared to own-root seedlings. The electron transport at the acceptor side of PSII from QA to QB was less affected by salt stress, which resulted in a significantly lower ROS content in leaves of grafted seedlings than that of own-root seedlings. Therefore, grafting high-yielding and good-quality Tieba mulberry with salt tolerant Qinglong mulberry as rootstock showed a relatively high salt tolerance. This may be because (1) the root system of rootstock presented high Na+ resistance and has selective absorption capacity for Na+ and K+ (2) the root system of rootstock prevented excess Na+ from being transported to aerial parts in order to reduce adverse effects of Na+ (3) the root system of rootstock had enhanced root activity under salt stress, which accelerated water and nutrient absorption (4) the leaves of grafted seedlings had higher PSII photochemical activity and electron transport rate compared with those of own-root seedlings under salt stress, which effectively reduced ROS burst mediated by photosynthesis and reduced oxidative damage

    Development of multifunctional unmanned aerial vehicles versus ground seeding and outplanting: What is more effective for improving the growth and quality of rice culture?

    Get PDF
    The agronomic processes are complex in rice production. The mechanization efficiency is low in seeding, fertilization, and pesticide application, which is labor-intensive and time-consuming. Currently, many kinds of research focus on the single operation of UAVs on rice, but there is a paucity of comprehensive applications for the whole process of seeding, fertilization, and pesticide application. Based on the previous research synthetically, a multifunctional unmanned aerial vehicle (mUAV) was designed for rice planting management based on the intelligent operation platform, which realized three functions of seeding, fertilizer spreading, and pesticide application on the same flight platform. Computational fluid dynamics (CFD) simulations were used for machine design. Field trials were used to measure operating parameters. Finally, a comparative experimental analysis of the whole process was conducted by comparing the cultivation patterns of mUAV seeding (T1) with mechanical rice direct seeder (T2), and mechanical rice transplanter (T3). The comprehensive benefit of different rice management processes was evaluated. The results showed that the downwash wind field of the mUAV fluctuated widely from 0 to 1.5 m, with the spreading height of 2.5 m, and the pesticide application height of 3 m, which meet the operational requirements. There was no significant difference in yield between T1, T2, and T3 test areas, while the differences in operational efficiency and input labor costs were large. In the sowing stage, T1 had obvious advantages since the working efficiency was 2.2 times higher than T2, and the labor cost was reduced by 68.5%. The advantages were more obvious compared to T3, the working efficiency was 4 times higher than in T3, and the labor cost was reduced by 82.5%. During the pesticide application, T1 still had an advantage, but it was not a significant increase in advantage relative to the seeding stage, in which operating efficiency increased by 1.3 times and labor costs were reduced by 25%. However, the fertilization of T1 was not advantageous due to load and other limitations. Compared to T2 and T3, operational efficiency was reduced by 80% and labor costs increased by 14.3%. It is hoped that this research will provide new equipment for rice cultivation patterns in different environments, while improving rice mechanization, reducing labor inputs, and lowering costs

    Genomic resources in plant breeding for sustainable agriculture

    Get PDF
    Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture

    Identification of Candidate Genes for the Plateau Adaptation of a Tibetan Amphipod, Gammarus lacustris, Through Integration of Genome and Transcriptome Sequencing

    Get PDF
    The amphipod Gammarus lacustris has been distributing in the Tibetan region with well-known uplifts of the Tibetan plateau. It is hence considered as a good model for investigating stress adaptations of the plateau. Here, we sequenced the whole-genome and full-length transcriptome of G. lacustris, and compared the transcriptome results with its counterpart Gammarus pisinnus from a nearby plain. Our main goal was to provide a genomic resource for investigation of genetic mechanisms, by which G. lacustris adapted to living on the plateau. The final draft genome assembly of G. lacustris was 5.07 gigabases (Gb), and it contained 443,304 scaffolds (>2 kb) with an N50 of 2,578 bp. A total of 8,858 unigenes were predicted in the full-length transcriptome of G. lacustris, with an average gene length of 1,811 bp. Compared with the G. pisinnus transcriptome, 2,672 differentially expressed genes (DEGs) were up-regulated and 2,881 DEGs were down-regulated in the G. lacustris transcriptome. Along with these critical DEGs, several enriched metabolic pathways, such as oxidative phosphorylation, ribosome, cell energy homeostasis, glycolysis and gluconeogenesis, were predicted to play essential roles in the plateau adaptation. In summary, the present study provides a genomic basis for understanding the plateau adaption of G. lacustris, which lays a fundamental basis for further biological and ecological studies on other resident aquatic species in the Tibetan plateau
    corecore