134,135 research outputs found
Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing
Branching processes are a class of continuous-time Markov chains (CTMCs) with
ubiquitous applications. A general difficulty in statistical inference under
partially observed CTMC models arises in computing transition probabilities
when the discrete state space is large or uncountable. Classical methods such
as matrix exponentiation are infeasible for large or countably infinite state
spaces, and sampling-based alternatives are computationally intensive,
requiring a large integration step to impute over all possible hidden events.
Recent work has successfully applied generating function techniques to
computing transition probabilities for linear multitype branching processes.
While these techniques often require significantly fewer computations than
matrix exponentiation, they also become prohibitive in applications with large
populations. We propose a compressed sensing framework that significantly
accelerates the generating function method, decreasing computational cost up to
a logarithmic factor by only assuming the probability mass of transitions is
sparse. We demonstrate accurate and efficient transition probability
computations in branching process models for hematopoiesis and transposable
element evolution.Comment: 18 pages, 4 figures, 2 table
- …