2 research outputs found

    Supplementary Material for: Isolation and Culture of Single Cell Types from Rat Liver

    No full text
    There have been few reports on the simultaneous isolation of multiple liver cell populations thus far. As such, this study was aimed at establishing a protocol for the simultaneous separation of hepatocytes (HCs), hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) from the rat liver and assessing the in vitro culture of these cells. Single-cell suspensions from the liver were obtained by ethylene glycol tetraacetic acid/collagenase perfusion. After low-speed centrifugal separation of HCs, pronase was added to the nonparenchymal cell fraction to eliminate the remaining HCs. Subsequently, HSCs, LSECs and KCs were purified by two steps of density gradient centrifugation using Nycodenz and Percoll in addition to selective attachment. Pronase treatment increased the HSC yield (1.5 ± 0.2 vs. 0.7 ± 0.3 cells/g liver, p < 0.05) and improved LSEC purity (93.6 ± 3.6 vs. 82.5 ± 5.6%, p < 0.01). The isolated cells could also be cultured in vitro. LSEC apoptosis began on day 3 and reached a maximum on day 7. A few surviving LSECs began proliferating and split to form a cobblestone, sheet-like appearance on day 14. The LSECs on day 14 lost fenestrations but retained scavenger function. Thus, viable and purified liver cells were obtained with a high yield from the rat liver using the developed method, which may be useful for studying the physiology and pathology of the liver in the future

    Supplementary Material for: Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway

    No full text
    <b><i>Background/Aims:</i></b> Cardiac remodeling is associated with oxidative stress. Sesamin, a well-known antioxidant from sesamin seeds, have been used extensively as traditional health foods. However, there is little known about the effect of sesamin on cardiac remodeling. Therefore, the present study aimed to determine whether sesamin could protect against cardiac remodeling and to clarify potential molecular mechanisms. <b><i>Methods:</i></b> The mice were subjected to either transverse aortic constriction (TAC) or sham surgery (control group). Beginning one week after surgery, the mice were oral gavage treated with sesamin (100mg·kg<sup>-1</sup>·day<sup>-1</sup>) or vehicle for 3 weeks. Cardiac hypertrophy was assessed by echocardiographic parameters, histological analyses and hypertrophic markers. <b><i>Results:</i></b> Sesamin alleviated cardiac hypertrophy, inhibited fibrosis and attenuated the inflammatory response. The increased production of reactive oxygen species, the activation of ERK1/2-dependent nuclear factor-κB and the increased level of Smad2 phosphorylation were observed in cardiac remolding model that were treated with sesamin. Furthermore, TAC induced alteration of Sirt3 and SOD2 was normalized by sesamin treatment. Finally, a selective Sirt3 inhibitor 3-TYP blocks all the protective role of sesamin, suggesting that a Sirt3-dependent effect of sesamin on cardiac remodeling. <b><i>Conclusion:</i></b> Sesamin improves cardiac function and prevents the development of cardiac hypertrophy via Sirt3/ROS pathway. Our results suggest the protective effect of sesamin on cardiac remolding
    corecore