8,988 research outputs found
Using ensemble-mean climate scenarios for future crop yield projections: a stochastic weather generator
Using climate scenarios from only 1 or a small number of global climate models (GCMs) in climate change impact studies may lead to biased assessment due to large uncertainty
in climate projections. Ensemble means in impact projections derived from a multi-GCM ensemble are often used as best estimates to reduce bias. However, it is often time consuming to run process-based models (e.g. hydrological and crop models) in climate change impact studies using numerous climate scenarios. It would be interesting to investigate if using a reduced number of climate scenarios could lead to a reasonable estimate of the ensemble mean. In this study, we generated a single ensemble-mean climate scenario (En-WG scenario) using ensemble means of the change factors derived from 20 GCMs included in CMIP5 to perturb the parameters in a weather generator, LARS-WG, for selected locations across Canada. We used En-WG scenarios to drive crop growth models in DSSAT ver. 4.7 to simulate crop yields for canola and spring wheat under RCP4.5 and RCP8.5 emission scenarios. We evaluated the potential of using the En-WG scenario to simulate crop yields by comparing them with crop yields simulated with the LARS-WG generated climate scenarios based on each of the 20 GCMs (WG scenarios). Our results showed that simulated crop yields using the En-WG scenarios were often close to the ensemble means of simulated crop yields using the 20 WG scenarios with a high probability of outperforming simulations based on a randomly selected GCM. Further studies are required, as the results of the proposed approach may be influenced by selected crop types, crop models, weather generators, and GCM ensembles
Alfvenic Ion Temperature Gradient Activities in a Weak Magnetic Shear Plasma
We report the first experimental evidence of Alfvenic ion temperature
gradient (AITG) modes in HL-2A Ohmic plasmas. A group of oscillations with
kHz and is detected by various diagnostics in high-density
Ohmic regimes. They appear in the plasmas with peaked density profiles and weak
magnetic shear, which indicates that corresponding instabilities are excited by
pressure gradients. The time trace of the fluctuation spectrogram can be either
a frequency staircase, with different modes excited at different times or
multiple modes may simultaneously coexist. Theoretical analyses by the extended
generalized fishbone-like dispersion relation (GFLDR-E) reveal that mode
frequencies scale with ion diamagnetic drift frequency and , and they
lie in KBM-AITG-BAE frequency ranges. AITG modes are most unstable when the
magnetic shear is small in low pressure gradient regions. Numerical solutions
of the AITG/KBM equation also illuminate why AITG modes can be unstable for
weak shear and low pressure gradients. It is worth emphasizing that these
instabilities may be linked to the internal transport barrier (ITB) and H-mode
pedestal physics for weak magnetic shear.Comment: 9 pages, 7 figure
The DArk Matter Particle Explorer mission
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space
science missions within the framework of the Strategic Pioneer Program on Space
Science of the Chinese Academy of Sciences, is a general purpose high energy
cosmic-ray and gamma-ray observatory, which was successfully launched on
December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE
scientific objectives include the study of galactic cosmic rays up to
TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the
search for dark matter signatures in their spectra. In this paper we illustrate
the layout of the DAMPE instrument, and discuss the results of beam tests and
calibrations performed on ground. Finally we present the expected performance
in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart.
Phy
In situ interface engineering for probing the limit of quantum dot photovoltaic devices.
Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons
High energy cosmic ray electrons plus positrons (CREs), which lose energy
quickly during their propagation, provide an ideal probe of Galactic
high-energy processes and may enable the observation of phenomena such as
dark-matter particle annihilation or decay. The CRE spectrum has been directly
measured up to TeV in previous balloon- or space-borne experiments,
and indirectly up to TeV by ground-based Cherenkov -ray
telescope arrays. Evidence for a spectral break in the TeV energy range has
been provided by indirect measurements of H.E.S.S., although the results were
qualified by sizeable systematic uncertainties. Here we report a direct
measurement of CREs in the energy range by the
DArk Matter Particle Explorer (DAMPE) with unprecedentedly high energy
resolution and low background. The majority of the spectrum can be properly
fitted by a smoothly broken power-law model rather than a single power-law
model. The direct detection of a spectral break at TeV confirms the
evidence found by H.E.S.S., clarifies the behavior of the CRE spectrum at
energies above 1 TeV and sheds light on the physical origin of the sub-TeV
CREs.Comment: 18 pages, 6 figures, Nature in press, doi:10.1038/nature2447
Competitions of magnetism and superconductivity in FeAs-based materials
Using the numerical unrestricted Hartree-Fock approach, we study the ground
state of a two-orbital model describing newly discovered FeAs-based
superconductors. We observe the competition of a mode spin-density
wave and the superconductivity as the doping concentration changes. There might
be a small region in the electron-doping side where the magnetism and
superconductivity coexist. The superconducting pairing is found to be spin
singlet, orbital even, and mixed s + d wave (even
parity).Comment: 5 pages, 3 figure
- …