9 research outputs found

    Downregulation of lysosomal and further gene expression characterization in lung cancer patients with bone metastasis

    No full text
    <p>Molecular and functional mechanisms of bone metastases were poorly understood. This study was to screen out differentially expressed genes (DEGs) and functional proteins in bone metastases from lung for better understanding of the molecular and functional mechanisms. Our results suggested <i>CTSS, CTSD, MX1, NKX2-1</i> might play a decisive role in bone metastasis. Collectively, these results demonstrated that bone metastasis from lung cancer would lead to changes in lysosome function, which may affect the decomposition and elimination of old bone matrix, thus affecting bone turnover. In addition, our findings provided new insights into the prediction and treatment of bone metastases.</p

    Rational Design of an Amphiphilic Chlorambucil Prodrug Realizing Self-Assembled Micelles for Efficient Anticancer Therapy

    No full text
    The application of anticancer drug chlorambucil (CLB) in chemotherapy is severely restricted by its insolubility, lability, and toxic side effects; therefore, it is challenging to realize a highly efficient anticancer therapy of chlorambucil. To solve the above drawbacks encountered by chlorambucil, herein we proposed an amphiphilic chlorambucil prodrug-based self-assembled micelle strategy to realize the highly efficient anticancer therapy of chlorambucil. 1,6-Hexanediamine hydrochloride (HDH) serving as the hydrophilic segment was covalently bound to hydrophobic CLB to prepare an amphiphilic prodrug CLB-HDH which could self-assemble into micelles in aqueous solution. These micelles can passively target tumor tissues via the enhanced permeability and retention (EPR) effect, leading to enhanced cellular internalization. Both the cytotoxicity assay in vitro and anticancer study in vivo confirmed the excellent therapeutic activity of CLB-HDH micelles in comparison with free chlorambucil. Moreover, the hemolysis examination and histological analysis demonstrated the designed CLB-HDH micelles are safe in drug delivery. Therefore, our designed amphiphilic prodrug CLB-HDH micelles bring new opportunity for chlorambucil clinical application to combat cancers

    Table_2_Genome-wide analysis of tandem duplicated genes and their expression under salt stress in seashore paspalum.XLSX

    No full text
    Seashore paspalum (Paspalum vaginatum) is a halophytic, warm-season grass which is closely related to various grain crops. Gene duplication plays an important role in plant evolution, conferring significant plant adaptation at the genomic level. Here, we identified 2,542 tandem duplicated genes (TDGs) in the P. vaginatum genome and estimated the divergence time of pairs of TDGs based on synonymous substitution rates (Ks). Expression of P. vaginatum TDGs resulted in enrichment in many GO terms and KEGG pathways when compared to four other closely-related species. The GO terms included: “ion transmembrane transporter activity,” “anion transmembrane transporter activity” and “cation transmembrane transport,” and KEGG pathways included “ABC transport.” RNA-seq analysis of TDGs showed tissue-specific expression under salt stress, and we speculated that P. vaginatum leaves became adapted to salt stress in the earlier whole-genome duplication (WGD; ~83.3 million years ago; Ma), whereas the entire P. vaginatum plant acquired a large number of TDGs related to salt stress in the second WGD (~23.3 Ma). These results can be used as a reference resource to accelerate salt-resistance research in other grasses and crops.</p

    Table_7_Genome-wide analysis of tandem duplicated genes and their expression under salt stress in seashore paspalum.XLSX

    No full text
    Seashore paspalum (Paspalum vaginatum) is a halophytic, warm-season grass which is closely related to various grain crops. Gene duplication plays an important role in plant evolution, conferring significant plant adaptation at the genomic level. Here, we identified 2,542 tandem duplicated genes (TDGs) in the P. vaginatum genome and estimated the divergence time of pairs of TDGs based on synonymous substitution rates (Ks). Expression of P. vaginatum TDGs resulted in enrichment in many GO terms and KEGG pathways when compared to four other closely-related species. The GO terms included: “ion transmembrane transporter activity,” “anion transmembrane transporter activity” and “cation transmembrane transport,” and KEGG pathways included “ABC transport.” RNA-seq analysis of TDGs showed tissue-specific expression under salt stress, and we speculated that P. vaginatum leaves became adapted to salt stress in the earlier whole-genome duplication (WGD; ~83.3 million years ago; Ma), whereas the entire P. vaginatum plant acquired a large number of TDGs related to salt stress in the second WGD (~23.3 Ma). These results can be used as a reference resource to accelerate salt-resistance research in other grasses and crops.</p

    Additional file 1 of Diagnostic performance of metagenomic next-generation sequencing for the detection of pathogens in cerebrospinal fluid in pediatric patients with central nervous system infection: a systematic review and meta-analysis

    No full text
    Additional file 1: Supplementary file. The command used in Stata Software. Supplementary Figure 1. The certainty of evidence measure by GRADE score system. Supplementary Figure 2. Forest plot for the positive likelihood ratio (PLR) of mNGS for the diagnosis of pediatric CNSI. Supplementary Figure 3. Forest plot for the negative likelihood ratio (NLR) of mNGS for the diagnosis of pediatric CNSI. Supplementary Figure 4. Forest plot for the Diagnostic Odd’s Ratio (DOR) Supplementary Table 1. Leave-one-out analysis depicting the pooled sensitivity and specificity

    Highly Ion Selective Proton Exchange Membrane Based on Sulfonated Polybenzimidazoles for Iron–Chromium Redox Flow Battery

    No full text
    The iron–chromium redox flow battery (ICRFB) has great potential for large-scale energy storage, due to its low capital cost of redox-active materials. However, the trade-off between conductivity and selectivity in the membranes limits its applications. Herein, a series of sulfonated polybenzimidazoles with exactly controlled sulfonation degree (SD) (S-PBI-x, x refers to SD) are designed and synthesized via direct copolymerization from the sulfonated monomer. Combined with the electrostatic repulsion of the formed imidazoliums, the S-PBIx membranes facilitate the proton transport and repel the redox-active ion crossover efficiently. Especially, when compared with Nafion 212 membrane, the S-PBI-100 membrane displays a comparable conductivity and more than an order of magnitude lower Fe3+ and Cr3+ permeabilities. Thus, a higher columbic efficiency (CE) of 98.2% and energy efficiency (EE) of 83.17% are achieved at 80 mA cm–2 for the corresponding ICRFB. Most importantly, no chemical degradation is observed for the S-PBI-100 membrane after in situ and ex situ stability tests

    Oxygen Reduction Kinetics of Fe–N–C Single Atom Catalysts Boosted by Pyridinic N Vacancy for Temperature-Adaptive Zn–Air Batteries

    No full text
    The design of temperature-adaptive Zn–air batteries (ZABs) with long life spans and high energy efficiencies is challenging owing to sluggish oxygen reduction reaction (ORR) kinetics and an unstable Zn/electrolyte interface. Herein, a quasi-solid-state ZAB is designed by combining atomically dispersed Fe–N–C catalysts containing pyridinic N vacancies (FeNC-VN) with a polarized organo-hydrogel electrolyte. First-principles calculation predicts that adjacent VN sites effectively enhance the covalency of Fe–Nx moieties and moderately weaken *OH binding energies, significantly boosting the ORR kinetics and stability. In situ Raman spectra reveal the dynamic evolution of *O2– and *OOH on the FeNC-VN cathode in the aqueous ZAB, proving that the 4e– associative mechanism is dominant. Moreover, the ethylene glycol-modulated organo-hydrogel electrolyte forms a zincophilic protective layer on the Zn anode surface and tailors the [Zn(H2O)6]2+ solvation sheath, effectively guiding epitaxial deposition of Zn2+ on the Zn (002) plane and suppressing side reactions. The assembled quasi-solid-state ZAB demonstrates a long life span of over 1076 h at 2 mA cm–2 at −20 °C, outperforming most reported ZABs

    Additional file 2: of Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss

    No full text
    Table S1. Lewis acid-base characteristics of the bacterial cell surfaces. Adhesion to chloroform (electron acceptor) and ethyl acetate (electron donor) was also tested to assess the Lewis acid-base characteristics of the bacterial cell surfaces. All the strains didn’t show significant difference between the affinity to chloroform and to ethyl acetate. (PDF 46 kb
    corecore