125,281 research outputs found
Modelling and control of a variable-speed switched reluctance generator based wind turbine
This paper studies the system modelling and control aspects of switched reluctance generator (SRG) based variable speed wind turbines. A control system is implemented to provide proper operation of the SRG as well as power tracking capabilities for varying wind speeds. The control system for the grid side inverter that will allow the SRG to properly generate power to the system is also presented. Studies are presented of both the SRG and inverter control systems capabilities during a balanced three-phase fault. The paper will demonstrate that the SRG based wind turbine presents a feasible variable wind speed solution with good fault response capabilities
Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields
Using the tight-binding approach, we investigate the electronic properties of
bilayer phosphorene (BLP) quantum dots (QDs) in the presence of perpendicular
electric and magnetic fields. Since BLP consists of two coupled phosphorene
layers, it is of interest to examine the layer-dependent electronic properties
of BLP QDs, such as the electronic distributions over the two layers and the
so-produced layer-polarization features, and to see how these properties are
affected by the magnetic field and the bias potential. We find that in the
absence of a bias potential only edge states are layer-polarized while the bulk
states are not, and the layer-polarization degree (LPD) of the unbiased edge
states increases with increasing magnetic field. However, in the presence of a
bias potential both the edge and bulk states are layer-polarized, and the LPD
of the bulk (edge) states depends strongly (weakly) on the interplay of the
bias potential and the interlayer coupling. At high magnetic fields, applying a
bias potential renders the bulk electrons in a BLP QD to be mainly distributed
over the top or bottom layer, resulting in layer-polarized bulk Landau levels
(LLs). In the presence of a large bias potential that can drive a
semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different
magnetic-field dependences, i.e., the zeroth LLs exhibit a linear-like
dependence on the magnetic field while the other LLs exhibit a square-root-like
dependence.Comment: 11 pages, 6 figure
Quantum spin mixing in a binary mixture of spin-1 atomic condensates
We study quantum spin mixing in a binary mixture of spin-1 condensates
including coherent interspecies mixing process, using the familiar spinor
condensates of Rb and Na atoms in the ground lower hyperfine F=1
manifolds as prototype examples. Within the single spatial mode approximation
for each of the two spinor condensates, the mixing dynamics reduce to that of
three coupled nonlinear pendulums with clear physical interpretations. Using
suitably prepared initial states, it is possible to determine the interspecies
singlet-pairing as well as spin-exchange interactions from the subsequent
mixing dynamics.Comment: 6 pages, 3 figure
Narrow-line Seyfert 1 Galaxies and the M_BH - sigma Relation
We have studied the location of narrow-line Seyfert 1 (NLS1) galaxies and
broad-line Seyfert 1 (BLS1) galaxies on the M_BH - sigma relation of non-active
galaxies. We find that NLS1 galaxies as a class - as well as the BLS1 galaxies
of our comparison sample - do follow the M_BH-sigma relation of non-active
galaxies if we use the width of the [SII]6716,6731 emission lines as surrogate
for stellar velocity dispersion, sigma_*. We also find that the width of
[OIII]5007 is a good surrogate for sigma_*, but only after (a) removal of
asymmetric blue wings, and, more important, after (b) excluding core [OIII]
lines with strong blueshifts (i.e., excluding galaxies which have their [OIII]
velocity fields dominated by radial motions, presumably outflows). The same
galaxies which are extreme outliers in [OIII] still follow the M_BH - sigma
relation in [SII]. We confirm previous findings that NLS1 galaxies are
systematically off-set from the M_BH - sigma relation if the full [OIII]
profile is used to measure sigma. We systematically investigate the influence
of several parameters on the NSL1 galaxies' location on the M_BH - sigma plane:
[OIII]_core blueshift, L/L_Edd, intensity ratio FeII/H_beta, NLR density, and
absolute magnitude. Implications for NLS1 models and for their evolution along
the M_BH - sigma relation are discussed.Comment: ApJ Letters, in press (3 figures, one in colour
Experimental study of contact transition control incorporating joint acceleration feedback
Joint acceleration and velocity feedbacks are incorporated into a classical internal force control of a robot in contact with the environment. This is intended to achieve a robust contact transition and force tracking performance for varying unknown environments, without any need of adjusting the controller parameters, A unified control structure is proposed for free motion, contact transition, and constrained motion in view of the consumption of the initial kinetic energy generated by a nonzero impact velocity. The influence of the velocity and acceleration feedbacks, which are introduced especially for suppressing the transition oscillation, on the postcontact tracking performance is discussed. Extensive experiments are conducted on the third joint of a three-link direct-drive robot to verify the proposed scheme for environments of various stiffnesses, including elastic (sponge), less elastic (cardboard), and hard (steel plate) surfaces. Results are compared with those obtained by the transition control scheme without the acceleration feedback. The ability of the proposed control scheme in resisting the force disturbance during the postcontact period is also experimentally investigated
Entanglement and spin squeezing properties for three bosons in two modes
We discuss the canonical form for a pure state of three identical bosons in
two modes, and classify its entanglement correlation into two types, the
analogous GHZ and the W types as well known in a system of three
distinguishable qubits. We have performed a detailed study of two important
entanglement measures for such a system, the concurrence and the
triple entanglement measure . We have also calculated explicitly the spin
squeezing parameter and the result shows that the W state is the most
``anti-squeezing'' state, for which the spin squeezing parameter cannot be
regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P
Human gait recognition with matrix representation
Human gait is an important biometric feature. It can be perceived from a great distance and has recently attracted greater attention in video-surveillance-related applications, such as closed-circuit television. We explore gait recognition based on a matrix representation in this paper. First, binary silhouettes over one gait cycle are averaged. As a result, each gait video sequence, containing a number of gait cycles, is represented by a series of gray-level averaged images. Then, a matrix-based unsupervised algorithm, namely coupled subspace analysis (CSA), is employed as a preprocessing step to remove noise and retain the most representative information. Finally, a supervised algorithm, namely discriminant analysis with tensor representation, is applied to further improve classification ability. This matrix-based scheme demonstrates a much better gait recognition performance than state-of-the-art algorithms on the standard USF HumanID Gait database
- …