267 research outputs found
Cyclic Timetable Scheduling Problem on High-speed Railway Line
Due to several obvious advantages both in transport marketing and train operation planning, the cyclic timetable has already applied in many high-speed railway (HSR) countries. In order to adopt the cyclic timetable in China's HSR system, a Mixed Integer Programmer (MIP) model is proposed in this paper involving many general constraints, such as running time, dwell time, headway, and connection constraints. In addition, the real-world overtaking rule that concerning a train with higher priority will not be overtaken by a slower one is incorporated into the cyclic timetable optimization model. An approach based on fixed departure is proposed to get a cyclic timetable with minimum total journey time within a reasonable time. From numerical investigations using data from Guangzhou-Zhuhai HSR line in China, the proposed model and associated approach are tested and shown to be effective
Inserting Extra Train Services on High-Speed Railway
With the aim of supporting future traffic needs, an account of how to reconstruct an existing cyclic timetable by inserting additional train services will be given in this paper. The Timetable-based Extra Train Services Inserting (TETSI) problem is regarded as an integration of railway scheduling and rescheduling problem. The TETSI problem therefore is considered involving many constraints, such as flexible running times, dwell times, headway and time windows. Characterized based on an event-activity graph, a general Mixed Integer Program model for this problem is formulated. In addition, several extensions to the general model are further proposed. The real-world constraints that concerning the acceleration and deceleration times, priority for overtaking, allowed adjustments, periodic structure and frequency of services are incorporated into the general model. From numerical investigations using data from Shanghai-Hangzhou High-Speed Railway in China, the proposed framework and associated techniques are tested and shown to be effective
Latent User Intent Modeling for Sequential Recommenders
Sequential recommender models are essential components of modern industrial
recommender systems. These models learn to predict the next items a user is
likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user
intents, which often drive user behaviors online. Intent modeling is thus
critical for understanding users and optimizing long-term user experience. We
propose a probabilistic modeling approach and formulate user intent as latent
variables, which are inferred based on user behavior signals using variational
autoencoders (VAE). The recommendation policy is then adjusted accordingly
given the inferred user intent. We demonstrate the effectiveness of the latent
user intent modeling via offline analyses as well as live experiments on a
large-scale industrial recommendation platform.Comment: The Web Conference 2023, Industry Trac
5-Nitro-2-(3-phenylpropylamino) Benzoic Acid Inhibits the Proliferation and Migration of Lens Epithelial Cells by Blocking CaMKII Signaling
Posterior capsule opacification (PCO) is a post-surgery complication of cataract surgery, and lens epithelial cells (LECs) are involved in its development. A suppressive effect on LECs is exerted by the non specific chloride channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) exerts. Herein, the growth and migration inhibitory effects of NPPB on LECs were assessed, and the mechanism underlying the effects were investigated by focusing on Ca2+/CaMKII signaling. LECs were treated with different concentrations of NPPB, and the changes in cell viability, cell-cycle distribution, anchorage-dependent growth, migration, Ca2+ level, and CaMKII expression were evaluated. NPPB inhibited LECs’ proliferation and induced G1 cell-cycle arrest in the cells. Regarding LECs’ mobility, NPPB suppressed the cells’ anchorage-dependent growth ability and inhibited their migration. Changes in cell phenotypes were associated with an increased intracellular Ca2+ level and down-regulation of CaMKII. Together these results confirmed the inhibitory effect of NPPB on the proliferation and migration of LECs, and the effect was shown to be associated with the induced level of Ca2+ and the inhibition of CaMKII signaling transduction
Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii
<p>Abstract</p> <p>Background</p> <p>Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on <it>Myotis davidii</it>, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of <it>M. davidii</it>. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes.</p> <p>Results</p> <p><it>M. davidii </it>comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in <it>M. davidii</it>. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively.</p> <p>Conclusions</p> <p>The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of <it>M. davidii </it>appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH).</p
- …