58 research outputs found

    A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties

    Get PDF
    National Nature Science Foundation of China [21007021, 21076099, 21177050, 21206060]; Natural Science Foundation of Jiangsu Province [BK2012717]; Postdoctoral Foundation of China [2012M521014]; Society Development Fund of Zhenjiang [SH2011011, SH2012020]; Doctoral Innovation Fund of Jiangsu [CXLX12-0666]A facile, one-step synthesis of carbon nanotube (CNT)-loaded Ag/AgBr is reported. The as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV/Vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, photoluminescence (PL) spectroscopy and electrochemical impedance spectroscopy (EIS). The CNT/Ag/AgBr composite exhibited much higher photocatalytic activity than pure Ag/AgBr in degrading methyl orange (MO) dye solution. The loading amount of CNT had a significant influence on the photoactivity of the CNT/Ag/AgBr composite. When the CNT loading amount was 1.4 at%, the hybrid material showed the highest photocatalytic ability. The result showed that a small amount of CNT was beneficial for photo-generated electron transfer, which could enhance the photoactivity of CNT/Ag/AgBr. The degradation dye solution was tested by liquid chromatography/mass spectrometry (LC/MS) and total organic carbon (TOC) analysis. Based on the results, the structure of the synthesized CNT/Ag/AgBr hybrid material was verified and the possible degradation path of the MO dye was proposed. A possible visible-light photocatalytic degradation mechanism was also discussed

    Tumor Endothelium Marker-8 Based Decoys Exhibit Superiority over Capillary Morphogenesis Protein-2 Based Decoys as Anthrax Toxin Inhibitors

    Get PDF
    Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA), lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) can effectively block anthrax intoxication, which is particularly valuable when the toxin has already been overproduced at the late stage of anthrax infection, thus rendering antibiotics ineffectual. Receptor-like agonists, such as the mammalian cell-expressed von Willebrand factor type A (vWA) domain of CMG2 (sCMG2), have demonstrated potency against the anthrax toxin. However, the soluble vWA domain of TEM8 (sTEM8) was ruled out as an anthrax toxin inhibitor candidate due to its inferior affinity to PA. In the present study, we report that L56A, a PA-binding-affinity-elevated mutant of sTEM8, could inhibit anthrax intoxication as effectively as sCMG2 in Fisher 344 rats. Additionally, pharmacokinetics showed that L56A and sTEM8 exhibit advantages over sCMG2 with better lung-targeting and longer plasma retention time, which may contribute to their enhanced protective ability in vivo. Our results suggest that receptor decoys based on TEM8 are promising anthrax toxin inhibitors and, together with the pharmacokinetic studies in this report, may contribute to the development of novel anthrax drugs

    Three-dimensional stability analysis of tunnel face based on unified strength theory

    No full text
    Abstract The impact of cyclic footage and intermediate principal stress on the stability of the tunnel-face area are analyzed in this study using the theory of limit analysis. The study introduces the unified strength theory and proposes three-dimensional logarithmic spiral failure modes with corresponding velocity fields. The influence of various parameters on the tunnel-face area stability is analyzed, and it is found that when the internal friction angle is less than 30°, the internal friction angle parameters should be improved first to enhance stability, while when the internal friction angle is greater than 30°, cohesion should be prioritized. When using the double shear uniform strength theory in the tunnel-face area, the intermediate principal stress can improve the stability of the tunnel face. Results show that Mohr–Coulomb criterion calculations are conservative in the good surrounding ground, but no similar conclusion has been obtained for the poor surrounding ground, and specific problems must be analyzed during construction

    Webit&NEU: An Embedded Device for the Internet of Things

    No full text
    The Internet of Things (IoT) is regarded as the future generation Internet, which ranges from radio frequency identification (RFID) to the ubiquitous computing systems such as wireless sensor networks and mobile ad hoc networks. With the rapid development of IoT, designing an effective low-cost embedded terminal device for the IoT become very necessary. A new embedded device, Webit&NEU, and its reduced embedded real-time operating system used for IoT are implemented by our China Liaoning Province Embedded Technique Key Laboratory in this paper. Besides, related modules in terms of RFID technique, wireless communication, and network protocol are also provided in this paper. Compared with several current solutions of connecting devices and Internet, it has the advantages of good real-time performance, light weight, and low cost. Besides, this paper also puts forward a localization algorithm for the Webit&NEU, and experimental test results in terms of real-time system ability, network communication performance, and localization algorithm show that Webit&NEU can work well and meet the actual requirements of the IoT

    Synthesis and Photocatalytic Activity of Pd-AgNbO3

    No full text
    Pd-AgNbO3 photocatalysts were synthesized by an impregnation method. X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectra (XPS) and diffuse reflectance spectra (DRS) were employed to investigate the structure, morphology and photocatalytic properties of the photocatalysts. The photocatalytic activity of the samples was evaluated by degradation of methylene blue dye (MB). The mechanism of enhancing photocatalytic activity was also discussed. The results indicate that Pd loading could not change the crystal structure and surface property of the AgNbO3. The DRS analysis indicates that Pd loading increases the ability of visible light absorption of the catalysts. The Pd-AgNbO3 photocatalysts present the enhanced photocatalytic activity compared with the pure AgNbO3. The photocatalytic efficiency is the highest when the sample with 0.8wt% Pd was calcined at 400 degrees C for 3 h and the MB degradation rate is 92.2%. The photocatalytic degradation of MB over the samples follows pseudo-first-order kinetics

    Synthesis and Photocatalytic Activity of Pd-AgNbO3

    No full text
    Pd-AgNbO3 photocatalysts were synthesized by an impregnation method. X-ray powder diffraction (XRD), scanning electronic microscope (SEM) and energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectra (XPS) and diffuse reflectance spectra (DRS) were employed to investigate the structure, morphology and photocatalytic properties of the photocatalysts. The photocatalytic activity of the samples was evaluated by degradation of methylene blue dye (MB). The mechanism of enhancing photocatalytic activity was also discussed. The results indicate that Pd loading could not change the crystal structure and surface property of the AgNbO3. The DRS analysis indicates that Pd loading increases the ability of visible light absorption of the catalysts. The Pd-AgNbO3 photocatalysts present the enhanced photocatalytic activity compared with the pure AgNbO3. The photocatalytic efficiency is the highest when the sample with 0.8wt% Pd was calcined at 400 degrees C for 3 h and the MB degradation rate is 92.2%. The photocatalytic degradation of MB over the samples follows pseudo-first-order kinetics

    Heuristic Routing Algorithms for Time-Sensitive Networks in Smart Factories

    No full text
    Over recent years, traditional manufacturing factories have been accelerating their transformation and upgrade toward smart factories, which are an important concept within Industry 4.0. As a key communication technology in the industrial internet architecture, time-sensitive networks (TSNs) can break through communication barriers between subsystems within smart factories and form a common network for various network flows. Traditional routing algorithms are not applicable for this novel type of network, as they cause unnecessary congestion and latency. Therefore, this study examined the classification of TSN flows in smart factories, converted the routing problem into two graphical problems, and proposed two heuristic optimization algorithms, namely GATTRP and AACO, to find the optimal solution. The experiments showed that the algorithms proposed in this paper could provide a more reasonable routing arrangement for various TSN flows with different time sensitivities. The algorithms could effectively reduce the overall delay by up to 74% and 41%, respectively, with promising operating performances

    A Multi-Objective Task Scheduling Strategy for Intelligent Production Line Based on Cloud-Fog Computing

    No full text
    With the widespread use of industrial Internet technology in intelligent production lines, the number of task requests generated by smart terminals is growing exponentially. Achieving rapid response to these massive tasks becomes crucial. In this paper we focus on the multi-objective task scheduling problem of intelligent production lines and propose a task scheduling strategy based on task priority. First, we set up a cloud-fog computing architecture for intelligent production lines and built the multi-objective function for task scheduling, which minimizes the service delay and energy consumption of the tasks. In addition, the improved hybrid monarch butterfly optimization and improved ant colony optimization algorithm (HMA) are used to search for the optimal task scheduling scheme. Finally, HMA is evaluated by rigorous simulation experiments, showing that HMA outperformed other algorithms in terms of task completion rate. When the number of nodes exceeds 10, the completion rate of all tasks is greater than 90%, which well meets the real-time requirements of the corresponding tasks in the intelligent production lines. In addition, the algorithm outperforms other algorithms in terms of maximum completion rate and power consumption

    Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity

    No full text
    Novel visible-light-driven AgX/g-C3N4 (X = Br, I) hybrid materials were synthesized by the facile water bath method. The AgX/g-C3N4 hybrid materials were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Fourier transform infrared spectra (FTIR), Raman and the special surface area. The XRD, EDS, TEM, FTIR, Raman and XPS analyses indicated that AgX nanoparticles were evenly distributed on the surface of g-C3N4 and the heterostructures were formed. The photocatalytic activity of the AgX/g-C3N4 hybrid materials was evaluated using methyl orange as a target organic pollutant. The as-prepared AgX/g-C3N4 hybrid materials displayed much higher photocatalytic activity than the pure g-C3N4 and AgX nanoparticles. After the introduction of AgX nanoparticles, the photocurrent of the AgBr/g-C3N4 and AgI/g-C3N4 hybrid materials was found to increase by 21 and 8 times than that of the pure g-C3N4, respectively. The increased photocatalytic activity of the AgX/g-C3N4 hybrid materials was attributed to the synergic effect between g-C3N4 and AgX, which included the optical property, the better dispersion and the small size. A photocatalytic mechanism and the kinetics of AgX/g-C3N4 hybrid materials were also proposed
    • …
    corecore