37 research outputs found

    Spatial analysis of malaria in Anhui province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria has re-emerged in Anhui Province, China, and this province was the most seriously affected by malaria during 2005–2006. It is necessary to understand the spatial distribution of malaria cases and to identify highly endemic areas for future public health planning and resource allocation in Anhui Province.</p> <p>Methods</p> <p>The annual average incidence at the county level was calculated using malaria cases reported between 2000 and 2006 in Anhui Province. GIS-based spatial analyses were conducted to detect spatial distribution and clustering of malaria incidence at the county level.</p> <p>Results</p> <p>The spatial distribution of malaria cases in Anhui Province from 2000 to 2006 was mapped at the county level to show crude incidence, excess hazard and spatial smoothed incidence. Spatial cluster analysis suggested 10 and 24 counties were at increased risk for malaria (<it>P </it>< 0.001) with the maximum spatial cluster sizes at < 50% and < 25% of the total population, respectively.</p> <p>Conclusion</p> <p>The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit malaria risks and to further identify environmental factors responsible for the re-emerged malaria risks. Future public health planning and resource allocation in Anhui Province should be focused on the maximum spatial cluster region.</p

    PUBLIC RELATIONS IN CHINA : PAST, PRESENT AND FUTURE

    No full text

    Study on the Stiffness Correction Method of Novel Antivibration Bearing for Urban Rail Transit Viaduct

    No full text
    A novel antivibration bearing is developed to reduce the train-induced vibrations for urban rail transit viaduct. It adopts four high-damping thick rubber blocks stacking slantingly to reduce the vibration and provide large lateral stiffness. But the existing stiffness calculation method of laminated rubber bearing aimed at horizontal seismic isolation is unsuitable for thick rubber bearing designed for vertical vibration reduction. First, the stiffness correction method has been proposed based on the characteristics of the novel bearing. Second, to validate the design method, mechanical property tests are performed on a specimen of the novel bearing with design frequency at 8 Hz and with 3500 kN bearing capacity. Third, damping effects of the novel bearing are investigated through impulse vibration tests on scaled models. Results show that the mechanical property of the novel bearing can satisfy the engineering demand, and the proposed method for calculating the stiffness agrees well with the test results. The overall insertion loss of the novel bearing is 13.49 dB which is 5.32 dB larger than that of steel bearing, showing that the novel bearing is very promising to be used in the field to mitigate train-induced vibrations

    A Simplified Hollow-Core Photonic Crystal Fiber SERS Probe with a Fully Filled Photoreduction Silver Nanoprism

    No full text
    In this paper, a simplified hollow-core photonic crystal fiber surface-enhanced Raman scattering (SERS) probe is presented. Silver nanoprisms are grown with a photoreduction method and account for the SERS, which have better electromagnetic enhancement than spherical silver nanoparticles at 785 nm. Due to the antiresonant reflecting guidance mechanism, the excited laser and SERS signal are effectively guided in such a fully filled hollow-core photonic crystal fiber SERS probe and complicated selective filling with target sample is avoided. Rhodamine 6G molecules are used as probe molecules and the simplified hollow-core photonic crystal fiber SERS probe is test. Detection of low concentration Rhodamine 6G down to 10&minus;8 M is achieved with a short integration time of 300 ms

    Complete mitochondrial genome of Scincella modesta (Squamata: Scincidae)

    No full text
    The first complete mitochondrial genome sequence was determined for an oviparous lizard, Scincella modesta (Scincella, Scincidae). The total length of the complete mitochondrial genome was 17,511 bp, encodes 13 protein-coding genes, 22 tRNAs, 2 rRNA genes, and 2 non-coding regions. The overall base composition of S. modesta is A: 31.9%, T: 27.2%, G: 14.5%, and C: 26.5%. Most of the S. modesta mitochondrial genes are encoded on the H-strand except for the ND6 gene and eight tRNA genes, which are encoded on the L-strand. Mrbayes and ML tree based on 13 protein-coding genes indicated that S. vandenburghi is the sister group of the S. modesta within the genus Scincella. The complete mitogenome sequence of S. modesta provided fundamental data for resolving phylogenetic and genetic problems related to genus Scincella

    Overproduction of mycotoxin biosynthetic enzymes triggers Fusarium toxisome-shaped structure formation via endoplasmic reticulum remodeling.

    No full text
    Mycotoxin deoxynivalenol (DON) produced by the Fusarium graminearum complex is highly toxic to animal and human health. During DON synthesis, the endoplasmic reticulum (ER) of F. graminearum is intensively reorganized, from thin reticular structure to thickened spherical and crescent structure, which was referred to as "DON toxisome". However, the underlying mechanism of how the ER is reorganized into toxisome remains unknown. In this study, we discovered that overproduction of ER-localized DON biosynthetic enzyme Tri4 or Tri1, or intrinsic ER-resident membrane proteins FgHmr1 and FgCnx was sufficient to induce toxisome-shaped structure (TSS) formation under non-toxin-inducing conditions. Moreover, heterologous overexpression of Tri1 and Tri4 proteins in non-DON-producing fungi F. oxysporum f. sp. lycopersici and F. fujikuroi also led to TSS formation. In addition, we found that the high osmolarity glycerol (HOG), but not the unfolded protein response (UPR) signaling pathway was involved in the assembly of ER into TSS. By using toxisome as a biomarker, we screened and identified a novel chemical which exhibited high inhibitory activity against toxisome formation and DON biosynthesis, and inhibited Fusarium growth species-specifically. Taken together, this study demonstrated that the essence of ER remodeling into toxisome structure is a response to the overproduction of ER-localized DON biosynthetic enzymes, providing a novel pathway for management of mycotoxin contamination
    corecore