634 research outputs found

    Real-time in-situ chemical sensing, sensor-based film thickness metrology, and process control in W CVD process

    Get PDF
    A real-time in-situ sampling system has been implemented for chemical sensing in tungsten chemical vapor deposition process (W-CVD) using mass spectrometry. Sensor integration was realized to allow synchronous capture of equipment state signals and process signals (chemical information from mass spectrometry). Wafer state metrology from integrated mass spectrometry signals of different gaseous chemical species in the reaction was established with an uncertainty of 2-7 percent depending on the conversion rate of the process, which is determined by the process chemistry and processing conditions. The mass spectrometry-based wafer state metrology obtained was applied to implement fault detection and W film thickness process control: run-to-run control in H2 reduction W-CVD and real time end point control in SiH4 reduction process. The results demonstrate the benefit of combining real-time mass spectrometry sensor data with equipment state information for process control. The important generic issues regarding real-time in-situ chemical sensing using mass spectrometry in the context of a multi-component chemical reaction system like W-CVD have also been discussed. The accomplishments of this research demonstrate the value of in-situ chemical sensing in complex manufacturing process systems and provide clear pathways toward advanced process control methodology

    Isoperimetric Problems on the Line with Density |x|^p

    Get PDF
    On the line with density |x|^p, we prove that the best single bubble is an interval with endpoint at the origin and that the best double bubble is two adjacent intervals that meet at the origin

    TriMLP: Revenge of a MLP-like Architecture in Sequential Recommendation

    Full text link
    In this paper, we present a MLP-like architecture for sequential recommendation, namely TriMLP, with a novel Triangular Mixer for cross-token communications. In designing Triangular Mixer, we simplify the cross-token operation in MLP as the basic matrix multiplication, and drop the lower-triangle neurons of the weight matrix to block the anti-chronological order connections from future tokens. Accordingly, the information leakage issue can be remedied and the prediction capability of MLP can be fully excavated under the standard auto-regressive mode. Take a step further, the mixer serially alternates two delicate MLPs with triangular shape, tagged as global and local mixing, to separately capture the long range dependencies and local patterns on fine-grained level, i.e., long and short-term preferences. Empirical study on 12 datasets of different scales (50K\textasciitilde 10M user-item interactions) from 4 benchmarks (Amazon, MovieLens, Tenrec and LBSN) show that TriMLP consistently attains promising accuracy/efficiency trade-off, where the average performance boost against several state-of-the-art baselines achieves up to 14.88% with 8.65% less inference cost.Comment: 15 pages, 9 figures, 5 table

    Predicting DNA Methylation State of CpG Dinucleotide Using Genome Topological Features and Deep Networks

    Get PDF
    The hypo- or hyper-methylation of the human genome is one of the epigenetic features of leukemia. However, experimental approaches have only determined the methylation state of a small portion of the human genome. We developed deep learning based (stacked denoising autoencoders, or SdAs) software named DeepMethyl to predict the methylation state of DNA CpG dinucleotides using features inferred from three-dimensional genome topology (based on Hi-C) and DNA sequence patterns. We used the experimental data from immortalised myelogenous leukemia (K562) and healthy lymphoblastoid (GM12878) cell lines to train the learning models and assess prediction performance. We have tested various SdA architectures with different configurations of hidden layer(s) and amount of pre-training data and compared the performance of deep networks relative to support vector machines (SVMs). Using the methylation states of sequentially neighboring regions as one of the learning features, an SdA achieved a blind test accuracy of 89.7% for GM12878 and 88.6% for K562. When the methylation states of sequentially neighboring regions are unknown, the accuracies are 84.82% for GM12878 and 72.01% for K562. We also analyzed the contribution of genome topological features inferred from Hi-C. DeepMethyl can be accessed at http://dna.cs.usm.edu/deepmethyl/

    Pre-training on Synthetic Driving Data for Trajectory Prediction

    Full text link
    Accumulating substantial volumes of real-world driving data proves pivotal in the realm of trajectory forecasting for autonomous driving. Given the heavy reliance of current trajectory forecasting models on data-driven methodologies, we aim to tackle the challenge of learning general trajectory forecasting representations under limited data availability. We propose to augment both HD maps and trajectories and apply pre-training strategies on top of them. Specifically, we take advantage of graph representations of HD-map and apply vector transformations to reshape the maps, to easily enrich the limited number of scenes. Additionally, we employ a rule-based model to generate trajectories based on augmented scenes; thus enlarging the trajectories beyond the collected real ones. To foster the learning of general representations within this augmented dataset, we comprehensively explore the different pre-training strategies, including extending the concept of a Masked AutoEncoder (MAE) for trajectory forecasting. Extensive experiments demonstrate the effectiveness of our data expansion and pre-training strategies, which outperform the baseline prediction model by large margins, e.g. 5.04%, 3.84% and 8.30% in terms of MR6MR_6, minADE6minADE_6 and minFDE6minFDE_6
    • …
    corecore