50 research outputs found

    A bibliometric analysis of cerebral palsy from 2003 to 2022

    Get PDF
    PurposeThis bibliometric study explores cerebral palsy (CP) research from 2003 to 2022 to reveal the topic hotspots and collaborations.MethodsWe retrieved studies on CP from the Web of Science Core Collection from 2003 to 2022 and then used CiteSpace and Bibliometrix to perform a bibliometric analysis and attain knowledge mapping, including publication outputs, funding, journals, authors, institutions, countries/territories, keywords, collaborative relationships, and topic hotspots.ResultsIn total, 8,223 articles were published from 2003 to 2022. During this period, the number of publications increased continuously. Developmental Medicine and Child Neurology was the most productive and frequently co-cited journal. Boyd was the most productive and influential author, with 143 publications and 4,011 citations. The United States and Vrije Universiteit Amsterdam were the most productive countries and institutions, respectively. Researchers and institutions from the USA, Australia, and Canada constituted the core research forces, with extensive collaborations worldwide. The most common keywords were gait (553), rehabilitation (440), spasticity (325), botulinum toxin (174), therapy (148), upper extremity (141), quality of life (140), disability (115), pain (98), electromyography (97), kinematics (90), balance (88), participation (85), and walking (79).ConclusionThis study provides a systematic and comprehensive analysis of the CP-related literature. It reveals that Developmental Medicine and Child Neurology is the most active journal in this field. The USA, Vrije Universiteit Amsterdam, and Boyd are the top countries, institutions, and authors, respectively. Emerging treatment methods, complication management, and functional recovery comprise the future research directions and potential topic hotspots for CP

    The Motivation-Based Promotion of Proactive Control: The Role of Salience Network

    Get PDF
    It has been shown that reward motivation can facilitate proactive control, a cognitive control mode that is characterized of prior preparation and sustained holding of the goal-relevant information in working memory. However, it remains to be established the neural networks that may be involved in this promotion effect. In this study, participants underwent the AX-Continuous Performance Task (AX-CPT) that measures relative proactive control during functional magnetic resonance imaging (fMRI) scanning. We employed independent component analysis to decompose multiple brain networks and identified the task related network. Results showed that the salience network (SN) was engaged in the AX-CPT protocol. Importantly, our data demonstrated that reward modulated the association between task engagement of SN and proactive control, whereby the positive correlation was particularly observed in the reward condition. Moreover, reward modulated task engagement of the SN in a proactive manner, which may contribute to the behavioral proactive performance. Overall, our data suggest the involvement of SN in the reward facilitation effect of proactive control

    Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells (MQWs) during GaN barrier growth with different hydrogen (H2) percentages have been systematically studied. Ga surface-diffusion rate, stress relaxation, and H2 etching effect are found to be the main affecting factors of the surface evolution. As the percentage of H2 increases from 0 to 6.25%, Ga surface-diffusion rate and the etch effect are gradually enhanced, which is beneficial to obtaining a smooth surface with low pits density. As the H2 proportion further increases, stress relaxation and H2 over- etching effect begin to be the dominant factors, which degrade surface quality. Furthermore, the effects of surface evolution on the interface and optical properties of InGaN/GaN MQWs are also profoundly discussed. The comprehensive study on the surface evolution mechanisms herein provides both technical and theoretical support for the fabrication of high-quality InGaN/GaN heterostructures.Peer reviewe

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al

    Multi-Agent Fuzzy-Based Transit Signal Priority Control for Traffic Network Considering Conflicting Priority Requests

    No full text
    The performance of transit signal priority (TSP) with conflicting priority requests highly depends on the serving sequence of multiple TSP requests. A series of existing methods have been developed to determine the priority level of requests. However, most of these methods focused on isolated intersections or a small number of intersections, which are not applicable to complex, dynamic and nonlinear urban traffic networks. In this regard, we propose a multi-agent TSP control method at the network level considering conflicting priority requests. Fuzzy inference is used to manage signal control. We further develop a specific control algorithm. The performance of the proposed method is verified by a case study with a sizeable traffic network with 20 intersections and 49 links. Simulation results demonstrate that the proposed method outperforms other three benchmarking methods under different traffic demands and bus departure frequencies. It is worth-noting that the improvement becomes more notable with the increase of traffic demands and the reduction of bus departure frequencies

    YOLOv3-Lite: A Lightweight Crack Detection Network for Aircraft Structure Based on Depthwise Separable Convolutions

    No full text
    Due to the high proportion of aircraft faults caused by cracks in aircraft structures, crack inspection in aircraft structures has long played an important role in the aviation industry. The existing approaches, however, are time-consuming or have poor accuracy, given the complex background of aircraft structure images. In order to solve these problems, we propose the YOLOv3-Lite method, which combines depthwise separable convolution, feature pyramids, and YOLOv3. Depthwise separable convolution is employed to design the backbone network for reducing parameters and for extracting crack features effectively. Then, the feature pyramid joins together low-resolution, semantically strong features at a high-resolution for obtaining rich semantics. Finally, YOLOv3 is used for the bounding box regression. YOLOv3-Lite is a fast and accurate crack detection method, which can be used on aircraft structure such as fuselage or engine blades. The result shows that, with almost no loss of detection accuracy, the speed of YOLOv3-Lite is 50% more than that of YOLOv3. It can be concluded that YOLOv3-Lite can reach state-of-the-art performance
    corecore