78 research outputs found

    BEV-DG: Cross-Modal Learning under Bird's-Eye View for Domain Generalization of 3D Semantic Segmentation

    Full text link
    Cross-modal Unsupervised Domain Adaptation (UDA) aims to exploit the complementarity of 2D-3D data to overcome the lack of annotation in a new domain. However, UDA methods rely on access to the target domain during training, meaning the trained model only works in a specific target domain. In light of this, we propose cross-modal learning under bird's-eye view for Domain Generalization (DG) of 3D semantic segmentation, called BEV-DG. DG is more challenging because the model cannot access the target domain during training, meaning it needs to rely on cross-modal learning to alleviate the domain gap. Since 3D semantic segmentation requires the classification of each point, existing cross-modal learning is directly conducted point-to-point, which is sensitive to the misalignment in projections between pixels and points. To this end, our approach aims to optimize domain-irrelevant representation modeling with the aid of cross-modal learning under bird's-eye view. We propose BEV-based Area-to-area Fusion (BAF) to conduct cross-modal learning under bird's-eye view, which has a higher fault tolerance for point-level misalignment. Furthermore, to model domain-irrelevant representations, we propose BEV-driven Domain Contrastive Learning (BDCL) with the help of cross-modal learning under bird's-eye view. We design three domain generalization settings based on three 3D datasets, and BEV-DG significantly outperforms state-of-the-art competitors with tremendous margins in all settings.Comment: Accepted by ICCV 202

    The noncompact Schauder fixed point theorem in random normed modules

    Full text link
    Random normed modules (RNRN modules) are a random generalization of ordinary normed spaces, which are usually endowed with the two kinds of topologies -- the (Δ,λ)(\varepsilon,\lambda)-topology and the locally L0L^0-convex topology. The purpose of this paper is to give a noncompact generalization of the classical Schauder fixed point theorem for the development and financial applications of RNRN modules. Motivated by the randomized version of the classical Bolzano-Weierstrauss theorem, we first introduce the two notions of a random sequentially compact set and a random sequentially continuous mapping under the (Δ,λ)(\varepsilon,\lambda)-topology and further establish their corresponding characterizations under the locally L0L^0-convex topology so that we can treat the fixed point problems under the two kinds of topologies in an unified way. Then we prove our desired Schauder fixed point theorem that in a σ\sigma-stable RNRN module every continuous (under either topology) σ\sigma-stable mapping TT from a random sequentially compact closed L0L^0-convex subset GG to GG has a fixed point. The whole idea to prove the fixed point theorem is to find an approximate fixed point of TT, but, since GG is not compact in general, realizing such an idea in the random setting forces us to construct the corresponding Schauder projection in a subtle way and carry out countably many decompositions for TT so that we can first obtain an approximate fixed point for each decomposition and eventually one for TT by the countable concatenation skill. Besides, the new fixed point theorem not only includes as a special case Bharucha-Reid and Mukherjea's famous random version of the classical Schauder fixed point theorem but also implies the corresponding Krasnoselskii fixed point theorem in RNRN modules.Comment: 37 page

    Molecular Cloning and Expression Analysis of the Endogenous Cellulase Gene MaCel1 in Monochamus alternatus

    Get PDF
    The purpose of this study was to characterize the endogenous cellulase gene MaCel1 of Monochamus alternatus, which is an important vector of Bursaphelenchus xylophilus, a pine wood nematode, which causes pine wilt disease (PWD). In this study, MaCel1 was cloned by rapid amplification of cDNA end (RACE), and its expression analyzed by RT-qPCR (real-time quantitative PCR detecting). A total of 1778 bp of cDNA was obtained. The encoding region of this gene was 1509 bp in length, encoding a protein containing 502 amino acids with a molecular weight of 58.66 kDa, and the isoelectric point of 5.46. Sequence similarity analysis showed that the amino acids sequence of MaCel1 had high similarity with the beta-Glucosinolate of Anoplophora glabripennis and slightly lower similarity with other insect cellulase genes (GH1). The beta-D-Glucosidase activity of MaCel1 was 256.02 +/- 43.14 U/L with no beta-Glucosinolate activity. MaCel1 gene was widely expressed in the intestine of M. alternatus. The expression level of MaCel1 gene in male (3.46) and female (3.51) adults was significantly higher than that in other developmental stages, and the lowest was in pupal stage (0.15). The results will help reveal the digestive mechanism of M. alternatus and lay the foundation for controlling PWD by controlling M. alternatus

    Disruption of cortical integration during midazolam-induced light sedation: Effects of Midazolam-Induced Sedation on RSNs

    Get PDF
    This work examines the effect of midazolam‐induced light sedation on intrinsic functional connectivity of human brain, using a randomized, double‐blind, placebo‐controlled, cross‐over, within‐subject design. Fourteen healthy young subjects were enrolled and midazolam (0.03 mg/kg of the participant's body mass, to a maximum of 2.5 mg) or saline were administrated with an interval of one week. Resting‐state fMRI was conducted before and after administration for each subject. We focus on two types of networks: sensory related lower‐level functional networks and higher‐order functions related ones. Independent component analysis (ICA) was used to identify these resting‐state functional networks. We hypothesize that the sensory (visual, auditory, and sensorimotor) related networks will be intact under midazolam‐induced light sedation while the higher‐order (default mode, executive control, salience networks, etc.) networks will be functionally disconnected. It was found that the functional integrity of the lower‐level networks was maintained, while that of the higher‐level networks was significantly disrupted by light sedation. The within‐network connectivity of the two types of networks was differently affected in terms of direction and extent. These findings provide direct evidence that higher‐order cognitive functions including memory, attention, executive function, and language were impaired prior to lower‐level sensory responses during sedation. Our result also lends support to the information integration model of consciousness. Hum Brain Mapp 36:4247–4261, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc

    Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements

    Get PDF
    Significantly reducing platinum group metal (PGM) loading while improving catalytic performance and durability is critical to accelerating proton-exchange membrane fuel cells (PEMFCs) for transportation. Here we report an effective strategy to boost PGM catalysts through integrating PGM-free atomically-dispersed single metal active sites in the carbon support toward the cathode oxygen reduction reaction (ORR). We achieved uniform and fine Pt nanoparticle (NP) (∌2 nm) dispersion on an already highly ORR-active FeN4 site-rich carbon (FeN4–C). Furthermore, we developed an effective approach to preparing a well-dispersed and highly ordered L12 Pt3Co intermetallic nanoparticle catalyst on the FeN4–C support. DFT calculations predicted a synergistic interaction between Pt clusters and surrounding FeN4 sites through weakening O2 adsorption by 0.15 eV on Pt sites and reducing activation energy to break O–O bonds, thereby enhancing the intrinsic activity of Pt. Experimentally, we verified the synergistic effect between Pt or Pt3Co NPs and FeN4 sites, leading to significantly enhanced ORR activity and stability. Especially in a membrane electrode assembly (MEA) with a low cathode Pt loading (0.1 mgPt cm−2), the Pt/FeN4–C catalyst achieved a mass activity of 0.451 A mgPt−1 and retained 80% of the initial values after 30 000 voltage cycles (0.60 to 0.95 V), exceeding DOE 2020 targets. Furthermore, the Pt3Co/FeN4 catalyst achieved significantly enhanced performance and durability concerning initial mass activity (0.72 A mgPt−1), power density (824 mW cm−2 at 0.67 V), and stability (23 mV loss at 1.0 A cm−2). The approach to exploring the synergy between PGM and PGM-free Fe–N–C catalysts provides a new direction to design advanced catalysts for hydrogen fuel cells and various electrocatalysis processes

    Retrospective analysis of anesthesia for deep brain electrical stimulation in movement disorders

    No full text
    Objective To analyze the merits and demerits, and main points of anesthetic management of different anesthesia regimens for deep brain stimulation (DBS) in movement disorders. Methods Recorded and summarized general information of 365 patients with movement disorders: 1) Local anesthesia combined with hypnoanalgesia: concentration of 1% lidocaine or 0.5% ropivacaine of local infiltration anesthesia, intravenous fentanyl (0.05-0.10 mg) and droperidol (1-2 mg) assisted sedation, analgesia. 2) Local anesthesia combined with intravenous anesthesia: local anesthesia implemented as above, in addition to intravenous fentanyl (0.05-0.10 mg), propofol 2-4 mg/(kg·h), midazolam 0.02-0.03 mg/kg. 3) Endotracheal intubation and general anesthesia: local anesthesia first, then anesthesia was induced with midazolam 0.03-0.05 mg/kg, fentanyl 2-3 ÎŒ g/kg, etomidate 0.10-0.20 mg/kg, vecuronium 0.10 mg/kg or rocuronium 0.70 mg/kg. Endotracheal intubation, was performed for mechanical ventilation after implementation. Anesthesia was maintained with continuous intravenous infusion of propofol 2-4 mg/(kg·h) and remifentanil 0.05 - 0.10 ÎŒ g/(kg·min). 4) Laryngeal mask anesthesia: firstly local anesthesia was performed as above. Then anesthesia was induced with midazolam 0.02-0.03 mg/kg, fentanyl 1-2 ÎŒg/kg, etomidate 0.10-0.20 mg/kg, vecuronium 0.10 mg/kg or rocuronium 0.70 mg/kg. Anesthesia maintenance was the same as the above. Recorded the incidence of intraoperative complications of four anesthesia regimens for deep brain stimulation. Results For local anesthesia combined with hypnoanalgesia (17.65%, 3/17) and local anesthesia combined with intravenous anesthesia (22.45%, 11/49), the incidence rate of respiratory depression was higher than the other two anesthesia (0/44, 0/255). The difference was not significant. The incidence of decreased blood pressure and increased blood pressure was higher in endotracheal intubation and general anesthesia group (29.55% and 13.64% ) than in laryngeal mask anesthesia group (8.24% and 0.78%). The difference was statistically significant (P = 0.000). Conclusion The condition of movement disorders patients is usually complex. Appropriate anesthesia regimens should be selected according to individual preoperative condition, concurrent diseases and operation requirements. Laryngeal mask anesthesia for DBS seems to be superior to other anesthesia regimens. DOI10.3969/j.issn.1672⁃6731.2011.06.01

    Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine

    No full text
    By utilizing the promising alternative fuel of syngas, and the syngas/diesel dual-fuel reactivity controlled compression ignition (RCCI) is a potential combustion strategy for internal combustion engines. However, the optimal operating parameters for syngas/diesel RCCI engines under wide operating conditions have not been investigated. In this study, the operating parameters include fuel supply, syngas composition, and intake conditions of a syngas/diesel RCCI engine were optimized under wide load by integrating the KIVA-3V code and the non-dominated sort genetic algorithm II (NSGA-II). The results indicated that nitrogen oxides (NOx) emissions can be controlled in considerably low levels, and the efficient combustion of the premixed syngas in the squish region can be realized with high premix ratio and early pilot injection of diesel. Equivalent indicated specific fuel consumption (EISFC) and ringing intensity (RI) are the major issues for the optimization at low and mid load, respectively. The double diesel injection strategy with the relatively late main injection timing is an effective way to both improve combustion efficiency at the low load and reduce RI at the mid load. For the double diesel injection, the ratio of pilot injection is controlled in a narrow range to provide sufficient high reactivity fuel in the piston bowl and to avoid the local high-temperature combustion region simultaneously. With the restrictions of EISFC and RI, the optimal H2 fraction in the syngas is 60–80%. Based on the optimal fuel supply and intake conditions, a syngas with 75% H2 and the diluent factor C of 0.8 is capable of realizing the high efficiency, moderate combustion, and low emissions for the RCCI engine at full load range

    Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting Euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine

    No full text
    As an effective strategy to control the combustion of advanced combustion modes, the application of variable valve timing (VVT) in reactivity controlled compression ignition (RCCI) combustion was investigated in this study. By coupling KIVA-3V code with genetic algorithm, the combustion of a heavy-duty engine with RCCI combustion combined with VVT strategy was optimized under a wide load range. At each load, six operating parameters including premix ratio (PR), intake valve closing (IVC) timing, start of injection, exhaust gas recirculation rate, intake pressure, and intake temperature were optimized to realize low-emission and high-efficiency combustion. The optimization results indicate that, at low load, high PR coupled with either late IVC or base IVC can be utilized for the realization of high thermal efficiency. At mid load, the base IVC strategy is integrated with high PR, while the late IVC strategy is coupled with low PR. At high load, only the strategy with late IVC and low PR can be used. The strategy with higher PR and earlier IVC timing exhibits better engine performance on thermal efficiency and soot emissions, while the strategy with lower premix ratio and later IVC timing is superior in ringing intensity. By optimizing the RCCI combustion with the VVT strategy, the Euro 6 NOx limit can be met while maintaining ultra-low soot emissions at low and mid load. However, at least one aftertreatment device is required to further eliminate the NOx or soot emissions at high load. Under the whole load conditions, satisfactory fuel consumption can be obtained

    WOX-ARF modules initiate different types of roots

    No full text
    Summary: Seed plants have evolved a complex root system consisting of at least three root types, i.e., adventitious roots, lateral roots, and the primary root. Auxin is the key hormone that controls the initiation of different root types. Here, we show that protein complexes with different combinations of intermediate-clade WUSCHEL-RELATED HOMEOBOXs (IC-WOXs) and class-A AUXIN RESPONSE FACTORs (A-ARFs) initiate the three root types in Arabidopsis thaliana. In adventitious root founder cells from detached leaves, the WOX11-ARF6/8 complex activates RGF1 INSENSITIVEs (RGIs) and LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16) to initiate the adventitious root primordium. In lateral root founder cells, ARF7/19 activate RGIs and LBD16 without IC-WOX to initiate the lateral root primordium. In the primary root founder cell (i.e., hypophysis of an embryo), the WOX9-ARF5 complex initiates the primary root by activation of RGIs. Overall, the WOX-ARF modules show a division of labor to initiate different type of roots
    • 

    corecore