11 research outputs found

    MRNIP interacts with sex body chromatin to support meiotic progression, spermatogenesis, and male fertility in mice

    No full text
    Abstract Meiosis has a principal role in sexual reproduction to generate haploid gametes in both sexes. During meiosis, the cell nucleus hosts a dynamic environment where some genes are transcriptionally activated, and some are inactivated at the same time. This becomes possible through subnuclear compartmentalization. The sex body, sequestering X and Y chromosomes during male meiosis and creating an environment for the meiotic sex chromosome inactivation (MSCI) is one of the best known and studied subnuclear compartments. Herein, we show that MRNIP forms droplet-like accumulations that fuse together to create a distinct subnuclear compartment that partially overlaps with the sex body chromatin during diplotene. We demonstrate that Mrnip−/− spermatocytes have impaired DNA double-strand break (DSB) repair, they display reduced sex body formation and defective MSCI. We show that Mrnip−/− undergoes critical meiocyte loss at the diplotene stage. Furthermore, we determine that DNA DSBs (induced by SPO11) and synapsis initiation (facilitated by SYCP1) precede Mrnip expression in testes. Altogether, our findings indicate that in addition to an emerging role in DNA DSB repair, MRNIP has an essential function in spermatogenesis during meiosis I by forming drop-like accumulations interacting with the sex body

    Hyperon Polarization along the Beam Direction Relative to the Second and Third Harmonic Event Planes in Isobar Collisions at <math display="inline"><mrow><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>200</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></mrow></math>

    No full text
    The polarization of Λ and Λ¯ hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN=200  GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pT dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagrees with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pT dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy.The polarization of Λ\Lambda and Λˉ\bar{\Lambda} hyperons along the beam direction has been measured relative to the second and third harmonic event planes in isobar Ru+Ru and Zr+Zr collisions at sNN\sqrt{s_{NN}} = 200 GeV. This is the first experimental evidence of the hyperon polarization by the triangular flow originating from the initial density fluctuations. The amplitudes of the sine modulation for the second and third harmonic results are comparable in magnitude, increase from central to peripheral collisions, and show a mild pTp_T dependence. The azimuthal angle dependence of the polarization follows the vorticity pattern expected due to elliptic and triangular anisotropic flow, and qualitatively disagree with most hydrodynamic model calculations based on thermal vorticity and shear induced contributions. The model results based on one of existing implementations of the shear contribution lead to a correct azimuthal angle dependence, but predict centrality and pTp_T dependence that still disagree with experimental measurements. Thus, our results provide stringent constraints on the thermal vorticity and shear-induced contributions to hyperon polarization. Comparison to previous measurements at RHIC and the LHC for the second-order harmonic results shows little dependence on the collision system size and collision energy
    corecore