817 research outputs found

    Mass spectrometry approaches for profiling protein-protein interactions

    Full text link
    This dissertation is focused on developing cross-linking and mass spectrometry methodologies to study protein-protein interactions. Top-down cross-linking, in combination with mass spectrometry, provides advantages over bottom-up approaches, such as retaining posttranslational modification. Intermolecular cross-linking studies focus on defining protein complex topology and protein-protein interactions. We first developed the top-down MS approach to analyze intermolecular cross-linking in human hemoglobin. Both α-α and β-β intermolecular cross-linking were found and the cross-linking sites on the protein were identified, obtaining distance constraints between subunits of the human hemoglobin protein complex. This methodology would be a promising approach to characterize protein complexes and protein-protein interactions with high throughput and automation. This dissertation also focuses on development of cross-linking mass spectrometry to study synphilin-1 interactors and aggresome formation. Synphilin-1 is a protein that promotes the formation of protein aggregates and aggresome formation upon proteasome inhibition, and is implicated in Parkinson disease. Synphilin-1 contains several protein binding motifs. The biological functions of synphilin-1 and its role in aggresome formation and the pathogenesis of Parkinson disease remain to be elucidated. We utilized tandem affinity purification and label-free mass spectrometry to explore the patterns of cellular proteins associated with synphilin-1. We identified 57 synphilin-1 interacting proteins, and functional enrichment and pathway analysis showed that many of the associated proteins are involved in chromatin modulation, RNA and protein metabolism. Furthermore, we developed a proteomic strategy to identify synphilin-1 binary interacting partners as well as interacting domains using affinity purification followed by isotopically tagged cross-linking in combination with mass spectrometry. We found 24 newly discovered proteins that directly bind to synphilin-1. The proteins were mainly involved in RNA metabolism. The coiled-coil domain (CC), ankyrin-like repeat domain 2 (ANK2), and the protein aggregate promoting domain, appeared to the main regions that bound proteins. The functions of synphilin-1 interacting proteins, such as CK2, in aggresome formation were studied. The results show that CK2 is an important regulator of aggresome formation, but not through its kinase activities. Involvement of synphilin-1 in autophagy was also investigated. Knockdown of synphilin-1 shows that synphilin-1 impacts autophagy

    Investigations into the tropospheric cycle of COS : atmospheric distribution, air-sea and air-vegetation exchanges

    Get PDF
    In der hier vorliegenden Arbeit wurde der troposphärische Kreislauf von Carbonylsulfid (COS) untersucht. COS ist ein Quellgas des stratosphärischen Sulfat­Aerosols, das die Strahlungsbilanz beeinflussen und den chemischen Abbau des stratosphärischen Ozons beschleunigen kann. Trotz zahlreicher Studien sind die Quellen und Senken des atmosphärischen COS bisher nur unzulänglich quantifiziert. Insbesondere bestehen große Unsicherheiten in den Abschätzungen der Beiträge des Ozeans und der anthropogenen Quellen, sowie der Senkenstärke der Landvegetation. Schiffs­ und flugzeuggetragene Messungen des atmosphärischen COS ergaben kein einheitliches interhemisphärisches Verhältnis (IHR=MNH /M SH ). Während die Messungen von Bingemer et al. (1990), Staubes­Diederich (1992) und Johnson et al. (1993) ein IHR zwischen 1.10 und 1.25 zeigten, fanden die Messungen von Torres et al. (1980), Staubes­Diederich (1992), Weiss et al. (1995) und Thornton et al. (1996) keinen oder nur einen geringfügigen N/S­Gradienten. Die Untersuchung von Chin und Davis (1993) zeigt ein N/S­Verhältnis der COS­ Quellstärke von 2.3, das hauptsächlich auf die stärkeren anthropogenen Quellen auf der Nordhalbkugel zurückzuführen ist. Es ist unklar, ob der zeitweilige Konzentrationsüberschuß der Nordhemisphäre Zeichen anthropogener Quellen dort oder Teil eines durch die Senkenfunktion der Landpflanzen verursachten saisonalen Signals ist. Die Konsistenz der Breitenverteilung des COS­Mischungsverhältnisses mit den geographischen bzw. saisonalen Variationen der COS­Quellen und ­Senken muß überprüft werden. Dazu werden genaue Kenntnissen der Quell­ und Senkenstärken des atmosphärischen COS und ihrer raumzeitlichen Variabilität benötigt. Vor dem obigen Hintergrund ergeben sich als Schwerpunkte dieser Arbeit: (1) der Austausch von COS zwischen Atmosphäre und Ozean sowie (2) zwischen Atmosphäre und terrestrischer Vegetation und (3) die raumzeitliche Variabilität des atmosphärischen COS. Zur Untersuchung des Austausches von COS zwischen Atmosphäre und Ozean wurde das Konzentrations­Ungleichgewicht von COS zwischen Ozean und Atmosphäre durch Messungen des COS im Seewasser und in der Meeresluft ermittelt und die resultierenden Austauschflüsse mit einem Modell berechnet. Die Messungen fanden an Bord des Forschungsschiffs Polarstern während der Fahrten ANT/XV­1 (15.10.­6.11.1997, Bremerhaven­Kapstadt) und ANT /XV­5 (26.5.­6.20.1998, Kapstadt­Bremerhaven) statt. Die Konzentration des gelösten COS und das Sättigungsverhältnis von COS zwischen Ozean und Atmosphäre zeigen ausgeprägte Tagesgänge und saisonale und geographische Variationen. Die mittlere Konzentration von COS im Seewasser beträgt 14.7 pmol L -1 für die Herbst­Fahrt bzw. 18.1 pmol L -1 für die Sommer­Fahrt. Höchste COS­Konzentrationen werden in der jeweiligen Sommer­Hemisphäre und in Gebieten mit hoher biologischer Produktivität beobachtet, d.h. im Benguela­Strom im November, im Nordost­Atlantik im Juni und in den Auftriebgebieten vor Westafrika im Oktober bzw. Juni. In den übrigen Gebieten sind die Konzentrationen um eine Größenordnung niedriger. Die Konzentration von COS im Seewasser steigt frühmorgens von ihrem tiefsten Stand an. Um ca. 15 Uhr Ortszeit erreicht sie ihr Maximum, danach nimmt sie ab. Der Tagesgang unterstützt die Theorie, daß COS im Seewasser photochemisch produziert wird. Während der Tagesstunden wird eine Übersättigung des offenen Ozean für COS gefunden. Dagegen ist eine Untersättigung des Ozeans in den späten Nachtstunden zu beobachten. Der Ozean wirkt in den Tagesstunden als COS­Quelle, in der späten Nacht als COS­Senke. Die Untersättigung tritt sogar im Sommer in produktiven Meeresgebieten regelmäßig auf. Eine Konsequenz dieser Beobachtung ist die weitere Reduzierung der ozeanischen Quelle von COS gegenüber bisher publizierten Abschätzungen. Methylmercaptan (CH 3 SH) ist in allen Seewasserproben zu beobachten. Der Tagesmittelwert der CH 3 SH­Konzentration variiert zwischen 29 und 303 pm L -1 und ist 3­16 fach größer als der der COS­Konzentration. Der Tagesgang der CH 3 SH­Konzentration zeigt ein Minimum um die Mittagszeit. Die Tagesmittel der CH 3 SH­ und COS­Konzentrationen sind signifikant miteinander korreliert. Diese Daten liefern den Beweis dafür, daß CH 3 SH eine der wichtigen Vorgängersubstanzen von COS ist. Die Regressionslinie der Korrelation zwischen den mittleren COS­ und CH 3 SH­Konzentrationen weist nur einen geringfügigen Achsenabschnitt auf. Somit kann die CH 3 SH­Konzentration als ein Indikator der Konzentration von COS­Vorgängern benutzt werden. Es besteht außerdem eine Korrelation zwischen der CH 3 SH­Konzentration und dem Logarithmus der Konzentration des gelösten Chlorophyll a. Diese Korrelation deutet darauf hin, daß der Gehalt von CH 3 SH im Seewasser eine enge Beziehung zur marinen Primärproduktion hat. COS wird im Seewasser durch Hydrolyse abgebaut. Die Abbaurate hängt von der Temperatur des Seewassers ab. Je wärmer das Seewasser ist, desto schneller wird COS abgebaut, und um so kürzer ist die Lebenszeit von COS im Seewasser. Die Lebenszeit kann einerseits durch das Reaktionsgeschwindigkeits­Gesetz von Arrhenius berechnet werden, andererseits läßt sie sich durch exponentielle Anpassung an den nächtlichen Konzentrationsverlauf (d.h. bei Abwesenheit von Photoproduktion) abschätzen. Eine solche Anpassung des exponentiellen Abklingens wurde anhand von dicht gestaffelten Messungen während einiger Nächte vorgenommen. Die gefitteten Lebenszeiten stimmen mit den theoretischen Werten gut überein, obwohl die gefittete Lebenszeit neben Hydrolyse noch von anderen Prozessen (z.B. Transport nach unten, Air­Sea­Austausch, usw.) beeinflußt wird. Diese gute Übereinstimmung unterstützt die Aussage, daß die Hydrolyse eine bedeutende Rolle beim Abbau von COS im Seewasser spielt. Die berechnete Hydrolyse­Lebenszeit ist mit dem Tagesmittel der COS­Konzentration korreliert. Da die Tagesmittelwerte sowohl zeitliche wie auch räumliche Mittelwerte der COS­Konzentrationen darstellen, zeigt diese Korrelation, daß Hydrolyse eine bedeutende Rolle in der raumzeitlichen Variabilität der COS­Konzentration einnimmt. Da die Konzentration des gelösten COS von mehreren Faktoren abhängig ist, scheint eine multivariable Betrachtung sinnvoll. Hierfür wurde eine "Multiple Linear Regression Analysis'' (MLRA) ausgeführt. Diese Analyse ergibt ein empirisches Modell der folgenden Form für die Berechnung des Tagesmittels der COS­Konzentration: [COS] = 1.8# 13log[Chl] - 1.5W s 0.057G - 0.73, mit [COS] = mittlere Konzentration von COS in pmol L -1 # = Hydrolyse­Lebenszeit in Stunde [Chl] = mittlere Konzentration von Chlorophyll a in mg m -3 W s = Windgeschwindigkeit in m s -1 G = Intensität der Globalstrahlung in W m -2 . Die Parameter auf der rechten Seite der Gleichung können direkt oder indirekt von Satelliten aus gemessen werden, deshalb kann dieses Modell für die Abschätzung der Konzentration von COS im Seewasser anhand von Satelliten­ Daten verwendet werden. Das empirische Modell soll noch durch weitere Messungen bestätigt bzw. verbessert werden. Der Austauschfluß von COS zwischen der Atmosphäre und dem offenen Ozean wurde mit dem Air­Sea­Fluß­Modell von Liss and Slater (1974) zusammen mit dem Modell von Erickson (1993)

    The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

    Get PDF
    Turbulent fluxes of carbonyl sulfide (COS) and carbon disulfide (CS2) were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA) technique. A REA sampler was developed and validated using simultaneous measurements of CO2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS2 are -93 ± 11.7 pmol m-2 s-1 and -18 ± 7.6 pmol m-2 s-1, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO2 and \chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO2 of 10 ± 1.7 pmol m mol-1 has been derived from the regression line for the correlation between the COS and CO2 fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 ± 0.5 Tg COS yr-1
    corecore