179 research outputs found

    Study on Agent-based Innovation Behavior Research Technique

    Get PDF
    AbstractThe agent-based computer simulation method is available for complex system studying. The innovation system has characters of emergence and evolution; it is also a complex system. In order to build agent-based computer simulation model for innovation behavior studying, processes of question analysis, property abstract, model environment constructing, model agent building, model parameter adjustment, model running and result analysis have to be processed

    Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy

    Get PDF
    Neutrophils are the most abundant innate immune cells in human circulation; however, their derived exosomes have been rarely studied for tumor treatment. Here, we reported that exosomes from neutrophils (N-Ex) induce tumor cell apoptosis by delivering cytotoxic proteins and activating caspase signaling pathway. In addition, we decorated N-Ex with superparamagnetic iron oxide nanoparticles ( SPIONs) to achieve higher tumor-targeting therapeutic effect. We further fabricated exosome-like nanovesicles from neutrophils (NNVs) at high yield. Compared with liposome-loaded doxorubicin (DOX) and natural NNVs, DOX-loaded NNVs show an improved inhibition of tumor cell proliferation. Moreover, DOX-loaded, SPION-decorated NNVs selectively accumulate at the tumor sites under an external magnetic field, effectively restraining tumor growth and extensively prolonging the survival rate in mice. Overall, a simple and effective method to engineer N-Ex and NNVs at clinical applicable scale was developed, which enables the efficient and safe drug delivery for targeted and combined tumor therapy.Peer reviewe

    Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy

    Get PDF
    Neutrophils are the most abundant innate immune cells in human circulation; however, their derived exosomes have been rarely studied for tumor treatment. Here, we reported that exosomes from neutrophils (N-Ex) induce tumor cell apoptosis by delivering cytotoxic proteins and activating caspase signaling pathway. In addition, we decorated N-Ex with superparamagnetic iron oxide nanoparticles ( SPIONs) to achieve higher tumor-targeting therapeutic effect. We further fabricated exosome-like nanovesicles from neutrophils (NNVs) at high yield. Compared with liposome-loaded doxorubicin (DOX) and natural NNVs, DOX-loaded NNVs show an improved inhibition of tumor cell proliferation. Moreover, DOX-loaded, SPION-decorated NNVs selectively accumulate at the tumor sites under an external magnetic field, effectively restraining tumor growth and extensively prolonging the survival rate in mice. Overall, a simple and effective method to engineer N-Ex and NNVs at clinical applicable scale was developed, which enables the efficient and safe drug delivery for targeted and combined tumor therapy

    RhoC regulates the proliferation of gastric cancer cells through interaction with IQGAP1.

    Get PDF
    Our previous research results showed that both Ras homolog family member C (RhoC) and IQ-domain GTPase-activating protein 1 (IQGAP1) were over-expressed in gastric cancer tissues and cells, but their role in tumorigenensis has not been addressed clearly. Herein we reported the proliferation stimulating effect of RhoC and IQGAP1 on gastric cancer cells and the interaction between two proteins in regulating the proliferation of gastric cancer cells. Plasmids and viral constructs encoding target siRNA and DNA were used to alter the expression of RhoC and IQGAP1. MTT method and BrdU incorporation assay were used for analyzing the effect of RhoC and different structures of IQGAP1 on proliferation. Protein levels of IQGAP1 and RhoC in cell lines were detected by Western blotting. Immunofluorescence and Co-Immunoprecipitation assays were applied to investigate the localization and binding between RhoC and IQGAP1. The results showed that RhoC, IQGAP1 and the C-terminal fragment of IQGAP1 significantly stimulated the proliferation of gastric cancer cells, and enhanced the expression of cyclin E and cyclin D1. By contrast, reduction of endogenous IQGAP1 or RhoC by siRNA attenuated cell proliferation. The depletion of IQGAP1 expression by siRNA significantly blocked the proliferative activity of constitutively active RhoC, while RhoC silencing by siRNA had no effect on IQGAP1-induced proliferation in gastric cancer cells. Co-immunoprecipitation and Immunofluorescence assays showed that RhoC and IQGAP1 bound each other. In conclusion, our results suggest that RhoC stimulates the proliferation of gastric cancer cells through recruiting IQGAP1 as an effector

    Degradation mechanism of hydrogen-terminated porous silicon in the presence and in the absence of light

    No full text
    Si is well-known semiconductor that has a fundamental bandgap energy of 1.12 eV. Its photogenerated electrons in the conduction band can react with the ubiquitous oxygen molecules to yield β‹…O2βˆ’ radicals, but the photogenerated holes in the valance band can’t interact with OHβˆ’ to produce β‹…OH radicals. In this paper, we study the degradation of methyl orange (MO) by hydrogen-terminated porous Si (H-PSi) in the presence and in the absence of light. The absorption spectra of the degraded MO solutions indicated that the H-PSi had superior degradation ability. In the dark, the reduction of dye occurs simply by hydrogen transfer. Under room light, however, some of the dye molecules can be reduced by hydrogen transfer first and then decomposed in the conduction and valance bands. This result should be ascribed to its wide band gap energies centered at 1.79-1.94 eV

    Track-before-Detect Algorithm for Underwater Diver Based on Knowledge-Aided Particle Filter

    No full text
    This work studies the underwater detection and tracking of diver targets under a low signal-to-reverberation ratio (SRR) in active sonar systems. In particular, a particle filter track-before-detect based on a knowledge-aided (KA-PF-TBD) algorithm is proposed. Specifically, the original echo data is directly used as the input of the algorithm, which avoids the information loss caused by threshold detection. Considering the prior motion knowledge of the underwater diver target, we established a multi-directional motion model as the state transition model. An efficient method for calculating the statistical characteristics of echo data about the extended target is proposed based on the non-parametric kernel density estimation theory. The multi-directional movement model set and the statistical characteristics of the echo data are used as the knowledge-aided information of the particle filter process: this is used to calculate the particle weight with the sub-area instead of the whole area, and then the particles with the highest weight are used to estimate the target state. Finally, the effectiveness of the proposed algorithm is proved by simulation and sea-level experimental data analysis through joint evaluation of detection and tracking performance
    • …
    corecore