113 research outputs found

    PrisCrawler: A Relevance Based Crawler for Automated Data Classification from Bulletin Board

    Full text link
    Nowadays people realize that it is difficult to find information simply and quickly on the bulletin boards. In order to solve this problem, people propose the concept of bulletin board search engine. This paper describes the priscrawler system, a subsystem of the bulletin board search engine, which can automatically crawl and add the relevance to the classified attachments of the bulletin board. Priscrawler utilizes Attachrank algorithm to generate the relevance between webpages and attachments and then turns bulletin board into clear classified and associated databases, making the search for attachments greatly simplified. Moreover, it can effectively reduce the complexity of pretreatment subsystem and retrieval subsystem and improve the search precision. We provide experimental results to demonstrate the efficacy of the priscrawler.Comment: published in GCIS of IEEE WRI '0

    Semantic Parsing by Large Language Models for Intricate Updating Strategies of Zero-Shot Dialogue State Tracking

    Full text link
    Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues, which can be time-consuming and costly. However, DST extends beyond simple slot-filling and requires effective updating strategies for tracking dialogue state as conversations progress. In this paper, we propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST. Our approach reformulates the DST task by leveraging powerful Large Language Models (LLMs) and translating the original dialogue text to JSON through semantic parsing as an intermediate state. We also design a novel framework that includes more modules to ensure the effectiveness of updating strategies in the text-to-JSON process. Experimental results demonstrate that our approach outperforms existing zero-shot DST methods on MultiWOZ, exhibiting significant improvements in Joint Goal Accuracy (JGA) and slot accuracy compared to existing ICL methods. Our code has been released.Comment: Accepted to the Findings of EMNLP 2023 (Short Paper

    Inverse Game Theory for Stackelberg Games: the Blessing of Bounded Rationality

    Full text link
    Optimizing strategic decisions (a.k.a. computing equilibrium) is key to the success of many non-cooperative multi-agent applications. However, in many real-world situations, we may face the exact opposite of this game-theoretic problem -- instead of prescribing equilibrium of a given game, we may directly observe the agents' equilibrium behaviors but want to infer the underlying parameters of an unknown game. This research question, also known as inverse game theory, has been studied in multiple recent works in the context of Stackelberg games. Unfortunately, existing works exhibit quite negative results, showing statistical hardness and computational hardness, assuming follower's perfectly rational behaviors. Our work relaxes the perfect rationality agent assumption to the classic quantal response model, a more realistic behavior model of bounded rationality. Interestingly, we show that the smooth property brought by such bounded rationality model actually leads to provably more efficient learning of the follower utility parameters in general Stackelberg games. Systematic empirical experiments on synthesized games confirm our theoretical results and further suggest its robustness beyond the strict quantal response model

    Providing Definitive Learning Direction for Relation Classification System

    Get PDF
    Deep neural network has adequately revealed its superiority of solving various tasks in Natural Language Processing, especially for relation classification. However, unlike traditional feature-engineering methods that targetedly extract well-designed features for specific task, the diversity of input format for deep learning is limited; word sequence as input is the frequently used setting. Therefore, the input of neural network, to some extent, lacks pertinence. For relation classification task, it is not uncommon that, without specific entity pair, a sentence contains various relation types; therefore, entity pair indicates the distribution of the crucial information in input sentence for recognizing specific relation. Aiming at this characteristic, in this paper, several strategies are proposed to integrate entity pair information into the application of deep learning in relation classification task, in a way to provide definitive learning direction for neural network. Experimental results on the SemEval-2010 Task 8 dataset show that our method outperforms most of the state-of-the-art models, without external linguistic features

    Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs

    Full text link
    Large-scale knowledge graphs (KGs) are shown to become more important in current information systems. To expand the coverage of KGs, previous studies on knowledge graph completion need to collect adequate training instances for newly-added relations. In this paper, we consider a novel formulation, zero-shot learning, to free this cumbersome curation. For newly-added relations, we attempt to learn their semantic features from their text descriptions and hence recognize the facts of unseen relations with no examples being seen. For this purpose, we leverage Generative Adversarial Networks (GANs) to establish the connection between text and knowledge graph domain: The generator learns to generate the reasonable relation embeddings merely with noisy text descriptions. Under this setting, zero-shot learning is naturally converted to a traditional supervised classification task. Empirically, our method is model-agnostic that could be potentially applied to any version of KG embeddings, and consistently yields performance improvements on NELL and Wiki dataset

    FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue

    Full text link
    Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities.Comment: ACL 2023 Main Conferenc

    Seen to Unseen: Exploring Compositional Generalization of Multi-Attribute Controllable Dialogue Generation

    Full text link
    Existing controllable dialogue generation work focuses on the single-attribute control and lacks generalization capability to out-of-distribution multiple attribute combinations. In this paper, we explore the compositional generalization for multi-attribute controllable dialogue generation where a model can learn from seen attribute values and generalize to unseen combinations. We propose a prompt-based disentangled controllable dialogue generation model, DCG. It learns attribute concept composition by generating attribute-oriented prompt vectors and uses a disentanglement loss to disentangle different attributes for better generalization. Besides, we design a unified reference-free evaluation framework for multiple attributes with different levels of granularities. Experiment results on two benchmarks prove the effectiveness of our method and the evaluation metric.Comment: ACL 2023 Main Conferenc
    • …
    corecore