36 research outputs found

    Tackling Over-Smoothing for General Graph Convolutional Networks

    Full text link
    Increasing the depth of GCN, which is expected to permit more expressivity, is shown to incur performance detriment especially on node classification. The main cause of this lies in over-smoothing. The over-smoothing issue drives the output of GCN towards a space that contains limited distinguished information among nodes, leading to poor expressivity. Several works on refining the architecture of deep GCN have been proposed, but it is still unknown in theory whether or not these refinements are able to relieve over-smoothing. In this paper, we first theoretically analyze how general GCNs act with the increase in depth, including generic GCN, GCN with bias, ResGCN, and APPNP. We find that all these models are characterized by a universal process: all nodes converging to a cuboid. Upon this theorem, we propose DropEdge to alleviate over-smoothing by randomly removing a certain number of edges at each training epoch. Theoretically, DropEdge either reduces the convergence speed of over-smoothing or relieves the information loss caused by dimension collapse. Experimental evaluations on simulated dataset have visualized the difference in over-smoothing between different GCNs. Moreover, extensive experiments on several real benchmarks support that DropEdge consistently improves the performance on a variety of both shallow and deep GCNs.Comment: Submitted to TPAMI, 15 page

    Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks

    Full text link
    Social media has been developing rapidly in public due to its nature of spreading new information, which leads to rumors being circulated. Meanwhile, detecting rumors from such massive information in social media is becoming an arduous challenge. Therefore, some deep learning methods are applied to discover rumors through the way they spread, such as Recursive Neural Network (RvNN) and so on. However, these deep learning methods only take into account the patterns of deep propagation but ignore the structures of wide dispersion in rumor detection. Actually, propagation and dispersion are two crucial characteristics of rumors. In this paper, we propose a novel bi-directional graph model, named Bi-Directional Graph Convolutional Networks (Bi-GCN), to explore both characteristics by operating on both top-down and bottom-up propagation of rumors. It leverages a GCN with a top-down directed graph of rumor spreading to learn the patterns of rumor propagation, and a GCN with an opposite directed graph of rumor diffusion to capture the structures of rumor dispersion. Moreover, the information from the source post is involved in each layer of GCN to enhance the influences from the roots of rumors. Encouraging empirical results on several benchmarks confirm the superiority of the proposed method over the state-of-the-art approaches.Comment: 8 pages, 4 figures, AAAI 202

    A Restricted Black-box Adversarial Framework Towards Attacking Graph Embedding Models

    Full text link
    With the great success of graph embedding model on both academic and industry area, the robustness of graph embedding against adversarial attack inevitably becomes a central problem in graph learning domain. Regardless of the fruitful progress, most of the current works perform the attack in a white-box fashion: they need to access the model predictions and labels to construct their adversarial loss. However, the inaccessibility of model predictions in real systems makes the white-box attack impractical to real graph learning system. This paper promotes current frameworks in a more general and flexible sense -- we demand to attack various kinds of graph embedding model with black-box driven. To this end, we begin by investigating the theoretical connections between graph signal processing and graph embedding models in a principled way and formulate the graph embedding model as a general graph signal process with corresponding graph filter. As such, a generalized adversarial attacker: GF-Attack is constructed by the graph filter and feature matrix. Instead of accessing any knowledge of the target classifiers used in graph embedding, GF-Attack performs the attack only on the graph filter in a black-box attack fashion. To validate the generalization of GF-Attack, we construct the attacker on four popular graph embedding models. Extensive experimental results validate the effectiveness of our attacker on several benchmark datasets. Particularly by using our attack, even small graph perturbations like one-edge flip is able to consistently make a strong attack in performance to different graph embedding models.Comment: Accepted by the AAAI 202
    corecore