942 research outputs found

    Effects of cognitive task complexity and online planning on second language learners’ argumentative writing

    Get PDF
    Based on Kellogg’s writing model, Skehan’s Limited Attentional Capacity Model (LACM), and Robinson’s Cognition Hypothesis, our study investigated the effects of cognitive task complexity on syntactic complexity, lexical complexity, accuracy, fluency, and functional adequacy in Chinese L2 students’ argumentative writing, when students were under an online planning condition. Sixty-eight participants from a Chinese university were recruited to complete two writing tasks with task complexity varied in terms of [+ argument elements]. The findings showed that increasing task complexity led to decreased subordination in terms of clauses per T-unit and dependent clauses per clause, increased phrasal elaboration in terms of coordinate phrases per clause, and no changes in mean length of T-unit, T-units per sentence, mean length of clause, and complex nominals per clause. Neither significant differences in accuracy nor fluency were found as a function of increasing task complexity. Detrimental effects on functional adequacy in content, organization, and overall scores were identified with the increases in task complexity. The trade-offs between syntactic and lexical complexity and between syntactic complexity and functional adequacy support the basic principle of Skehan’s LACM that human’s information processing capacity is limited and Kellogg’s claim that learners have a limited central executive capacity in writing. Implications of the results of this research are discussed

    Module detection in complex networks using integer optimisation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection of <it>modules or community structure </it>is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks.</p> <p>Results</p> <p>We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations).</p> <p>Conclusions</p> <p>A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability.</p

    Global distributions of age- and sex-related arterial stiffness:systematic review and meta-analysis of 167 studies with 509,743 participants

    Get PDF
    Background: Arterial stiffening is central to the vascular ageing process and a powerful predictor and cause of diverse vascular pathologies and mortality. We investigated age and sex trajectories, regional differences, and global reference values of arterial stiffness as assessed by pulse wave velocity (PWV). Methods: Measurements of brachial-ankle or carotid-femoral PWV (baPWV or cfPWV) in generally healthy participants published in three electronic databases between database inception and August 24th, 2020 were included, either as individual participant-level or summary data received from collaborators (n = 248,196) or by extraction from published reports (n = 274,629). Quality was appraised using the Joanna Briggs Instrument. Variation in PWV was estimated using mixed-effects meta-regression and Generalized Additive Models for Location, Scale, and Shape. Findings: The search yielded 8920 studies, and 167 studies with 509,743 participants from 34 countries were included. PWV depended on age, sex, and country. Global age-standardised means were 12.5 m/s (95% confidence interval: 12.1–12.8 m/s) for baPWV and 7.45 m/s (95% CI: 7.11–7.79 m/s) for cfPWV. Males had higher global levels than females of 0.77 m/s for baPWV (95% CI: 0.75–0.78 m/s) and 0.35 m/s for cfPWV (95% CI: 0.33–0.37 m/s), but sex differences in baPWV diminished with advancing age. Compared to Europe, baPWV was substantially higher in the Asian region (+1.83 m/s, P = 0.0014), whereas cfPWV was higher in the African region (+0.41 m/s, P &lt; 0.0001) and differed more by country (highest in Poland, Russia, Iceland, France, and China; lowest in Spain, Belgium, Canada, Finland, and Argentina). High vs. other country income was associated with lower baPWV (−0.55 m/s, P = 0.048) and cfPWV (−0.41 m/s, P &lt; 0.0001).Interpretation: China and other Asian countries featured high PWV, which by known associations with central blood pressure and pulse pressure may partly explain higher Asian risk for intracerebral haemorrhage and small vessel stroke. Reference values provided may facilitate use of PWV as a marker of vascular ageing, for prediction of vascular risk and death, and for designing future therapeutic interventions. Funding: This study was supported by the excellence initiative VASCage funded by the Austrian Research Promotion Agency, by the National Science Foundation of China, and the Science and Technology Planning Project of Hunan Province. Detailed funding information is provided as part of the Acknowledgments after the main text.</p

    Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots

    Full text link
    We report on the coherent optical excitation of electron spin polarization in the ground state of charged GaAs quantum dots via an intermediate charged exciton (trion) state. Coherent optical fields are used for the creation and detection of the Raman spin coherence between the spin ground states of the charged quantum dot. The measured spin decoherence time, which is likely limited by the nature of the spin ensemble, approaches 10 ns at zero field. We also show that the Raman spin coherence in the quantum beats is caused not only by the usual stimulated Raman interaction but also by simultaneous spontaneous radiative decay of either excited trion state to a coherent combination of the two spin states.Comment: 4 pages, 3 figures. Minor modification
    • …
    corecore