32 research outputs found

    Genome-Wide Association Studies Identified Three Independent Polymorphisms Associated with α-Tocopherol Content in Maize Kernels

    Get PDF
    Tocopherols are a class of four natural compounds that can provide nutrition and function as antioxidant in both plants and animals. Maize kernels have low α-tocopherol content, the compound with the highest vitamin E activity, thus, raising the risk of vitamin E deficiency in human populations relying on maize as their primary vitamin E source. In this study, two insertion/deletions (InDels) within a gene encoding γ-tocopherol methyltransferase, Zea mays VTE4 (ZmVTE4), and a single nucleotide polymorphism (SNP) located ∼85 kb upstream of ZmVTE4 were identified to be significantly associated with α-tocopherol levels in maize kernels by conducting an association study with a panel of ∼500 diverse inbred lines. Linkage analysis in three populations that segregated at either one of these three polymorphisms but not at the other two suggested that the three polymorphisms could affect α-tocopherol content independently. Furthermore, we found that haplotypes of the two InDels could explain ∼33% of α-tocopherol variation in the association panel, suggesting ZmVTE4 is a major gene involved in natural phenotypic variation of α-tocopherol. One of the two InDels is located within the promoter region and associates with ZmVTE4 transcript level. This information can not only help in understanding the underlying mechanism of natural tocopherol variations in maize kernels, but also provide valuable markers for marker-assisted breeding of α-tocopherol content in maize kernels, which will then facilitate the improvement of maize as a better source of daily vitamin E nutrition

    Evaluation of Drought Tolerance in Maize Inbred Lines Selected from the Shaan A Group and Shaan B Group

    No full text
    Drought is one of the most prevailing abiotic stresses affecting the growth, development, and productivity of maize. Knowledge of drought tolerance could help in maize improvement. However, less research has been done to comprehensively evaluate the drought tolerance of maize inbred lines. We used 27 elite maize inbred lines selected from Shaan A group and Shaan B group breeding populations to estimate their drought tolerance in 3 years 2 locations under normal field conditions and low irrigation. Using principal component analysis (PCA) and GGE biplots, all inbred lines, including the controls, could be divided into four types. Ten lines could be categorized as the high-yield drought-resistant type (‘KB081’, ‘KA105’, ‘KB417’, ‘KB215’, ‘KB-7’, ‘2013KB-37’, ‘KA203’, ‘2012KA-34’, ‘KA225’, and ‘91227’) because of their stability and wide adaptability. Compared with the controls, a large proportion of the inbred lines selected from Shaan A and Shaan B breeding populations demonstrated higher drought resistance. Our results suggest that multi-year drought screening can be used as a tool to improve the drought resistance of maize inbred lines and provide a scientific basis for making better use of the Shaan A and Shaan B maize inbred lines to breed new varieties and to identify existing drought-resistant maize varieties

    Evaluation of Drought Tolerance in Maize Inbred Lines Selected from the Shaan A Group and Shaan B Group

    No full text
    Drought is one of the most prevailing abiotic stresses affecting the growth, development, and productivity of maize. Knowledge of drought tolerance could help in maize improvement. However, less research has been done to comprehensively evaluate the drought tolerance of maize inbred lines. We used 27 elite maize inbred lines selected from Shaan A group and Shaan B group breeding populations to estimate their drought tolerance in 3 years 2 locations under normal field conditions and low irrigation. Using principal component analysis (PCA) and GGE biplots, all inbred lines, including the controls, could be divided into four types. Ten lines could be categorized as the high-yield drought-resistant type (‘KB081’, ‘KA105’, ‘KB417’, ‘KB215’, ‘KB-7’, ‘2013KB-37’, ‘KA203’, ‘2012KA-34’, ‘KA225’, and ‘91227’) because of their stability and wide adaptability. Compared with the controls, a large proportion of the inbred lines selected from Shaan A and Shaan B breeding populations demonstrated higher drought resistance. Our results suggest that multi-year drought screening can be used as a tool to improve the drought resistance of maize inbred lines and provide a scientific basis for making better use of the Shaan A and Shaan B maize inbred lines to breed new varieties and to identify existing drought-resistant maize varieties

    Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents

    No full text
    In seeds, the endosperm is a crucial organ that plays vital roles in supporting embryo development and determining seed weight and quality. Starch is the predominant storage carbohydrate of the endosperm and accounts for ∼70% of the mature maize kernel weight. Nonetheless, because starch biosynthesis is a complex process that is orchestrated by multiple enzymes, the gene regulatory networks of starch biosynthesis, particularly amylose and amylopectin biosynthesis, have not been fully elucidated. Here, through high-throughput RNA sequencing, we developed a temporal transcriptome atlas of the endosperms of high-amylose maize and common maize at 5-, 10-, 15- and 20-day after pollination and found that 21,986 genes are involved in the programming of the high-amylose and common maize endosperm. A coexpression analysis identified multiple sequentially expressed gene sets that are closely correlated with cellular and metabolic programmes and provided valuable insight into the dynamic reprogramming of the transcriptome in common and high-amylose maize. In addition, a number of genes and transcription factors were found to be strongly linked to starch synthesis, which might help elucidate the key mechanisms and regulatory networks underlying amylose and amylopectin biosynthesis. This study will aid the understanding of the spatiotemporal patterns and genetic regulation of endosperm development in different types of maize and provide valuable genetic information for the breeding of starch varieties with different contents

    Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture

    No full text
    Maize kernel moisture content (KMC) at harvest greatly affects mechanical harvesting, transport and storage. KMC is correlated with kernel dehydration rate (KDR) before and after physiological maturity. KMC and KDR are complex traits governed by multiple quantitative trait loci (QTL). Their genetic architecture is incompletely understood. We used a multiomics integration approach with an association panel to identify genes influencing KMC and KDR. A genome-wide association study using time-series KMC data from 7 to 70 days after pollination and their transformed KDR data revealed respectively 98 and 279 loci significantly associated with KMC and KDR. Time-series transcriptome and proteome datasets were generated to construct KMC correlation networks, from which respectively 3111 and 759 module genes and proteins were identified as highly associated with KMC. Integrating multiomics analysis, several promising candidate genes for KMC and KDR, including Zm00001d047799 and Zm00001d035920, were identified. Further mutant experiments showed that Zm00001d047799, a gene encoding heat shock 70 kDa protein 5, reduced KMC in the late stage of kernel development. Our study provides resources for the identification of candidate genes influencing maize KMC and KDR, shedding light on the genetic architecture of dynamic changes in maize KMC

    Genome-wide evolutionary characterization and expression analysis of SIAMESE-RELATED family genes in maize

    No full text
    Abstracts Background The SIAMESE (SIM) locus is a cell-cycle kinase inhibitor (CKI) gene that has to date been identified only in plants; it encodes a protein that promotes transformation from mitosis to endoreplication. Members of the SIAMESE-RELATED (SMR) family have similar functions, and some are related to cell-cycle responses and abiotic stresses. However, the functions of SMRs are poorly understood in maize (Zea mays L.). Results In the present study, 12 putative SMRs were identified throughout the entire genome of maize, and these were clustered into six groups together with the SMRs from seven other plant species. Members of the ZmSMR family were divided into four groups according to their protein sequences. Various cis-acting elements in the upstream sequences of ZmSMRs responded to abiotic stresses. Expression analyses revealed that all ZmSMRs were upregulated at 5, 20, 25, and 35 days after pollination. In addition, we found that ZmSMR9/11/12 may have regulated the initiation of endoreplication in endosperm central cells. Additionally, ZmSMR2/10 may have been primarily responsible for the endoreplication regulation of outer endosperm or aleurone cells. The relatively high expression levels of almost all ZmSMRs in the ears and tassels also implied that these genes may function in seed development. The effects of treatments with ABA, heat, cold, salt, and drought on maize seedlings and expression of ZmSMR genes suggested that ZmSMRs were strongly associated with response to abiotic stresses. Conclusion The present study is the first to conduct a genome-wide analysis of members of the ZmSMR family by investigating their locations in chromosomes, identifying regulatory elements in their promoter regions, and examining motifs in their protein sequences. Expression analysis of different endosperm developmental periods, tissues, abiotic stresses, and hormonal treatments suggests that ZmSMR genes may function in endoreplication and regulate the development of reproductive organs. These results may provide valuable information for future studies of the functions of the SMR family in maize

    Evaluation of Yield-Based Low Nitrogen Tolerance Indices for Screening Maize (<i>Zea mays</i> L.) Inbred Lines

    No full text
    To screen the desired criterion to identify desirable genotypes and select genotypes best suited to limited nitrogen availability in order to facilitate the practice of low-nitrogen-tolerant breeding in maize, the response of 31 maize inbred lines, containing four control inbred lines (PH6WC, PH4CV, Zheng58, and Chang7-2) and others selected from the Shaan A and Shaan B heterotic groups cultivated at Northwest A&amp;F University (Yangling, Shaanxi, China), were evaluated. The experiment was conducted following a split plot design with two replications during three growing seasons (2015, 2016, and 2017) under both high nitrogen (HN) and low nitrogen (LN) conditions at the Yulin and Yangling in Shaanxi Province, China. Seven screening indices, based on grain yield under two contrasting nitrogen (N) conditions, the stress susceptibility index (SSI), yield stability index (YSI), mean productivity (MP), geometric mean productivity (GMP), stress tolerance index (STI), harmonic mean (HM), and low nitrogen tolerance index (LNTI), were computed to assess the overall index that accurately screened the desirable genotypes. The results of the correlation analyses and principal component analysis showed that MP, GMP, HM and STI were correlated with grain yield significantly and positively under contrasting N conditions, and were able to accurately discriminate the desirable genotypes. Compared with the control inbred lines, many inbred lines selected from the Shaan A and Shaan B groups showed a higher LN tolerance. This shows that we can effectively improve the LN tolerance of maize inbred lines through LN screening. Based on the screening indices, the three-dimensional diagram and genotype and genotype &#215; environment (GGE) biplots are agreed with this results, and we identified KA105, KB081, KA225, 91227, and 2013KB-47 as the desired genotypes that have the potential to be used to breed a high yield and stable hybrid

    Genetic characterization of inbred lines from Shaan A and B groups for identifying loci associated with maize grain yield

    No full text
    Abstract Background Increasing grain yield is a primary objective of maize breeding. Dissecting the genetic architecture of grain yield furthers genetic improvements to increase yield. Presented here is an association panel composed of 126 maize inbreds (AM126), which were genotyped by the genotyping-by-sequencing (tGBS) method. We performed genetic characterization and association analysis related to grain yield in the association panel. Results In total, 46,046 SNPs with a minor allele frequency (MAF) ≥0.01 were used to assess genetic diversity and kinship in AM126. The results showed that the average MAF and polymorphism information content (PIC) were 0.164 and 0.198, respectively. The Shaan B group, with 11,284 unique SNPs, exhibited greater genetic diversity than did the Shaan A group, with 2644 SNPs. The 61.82% kinship coefficient in AM126 was equal to 0, and only 0.15% of that percentage was greater than 0.7. A total of 31,983 SNPs with MAF ≥0.05 were used to characterize population structure, LD decay and association mapping. Population structure analysis suggested that AM126 can be divided into 6 subgroups, which is consistent with breeding experience and pedigree information. The LD decay distance in AM126 was 150 kb. A total of 51 significant SNPs associated with grain yield were identified at P < 1 × 10− 3 across two environments (Yangling and Yulin). Among those SNPs, two loci displayed overlapping regions in the two environments. Finally, 30 candidate genes were found to be associated with grain yield. Conclusions These results contribute to the genetic characterization of this breeding population, which serves as a reference for hybrid breeding and population improvement, and demonstrate the genetic architecture of maize grain yield, potentially facilitating genetic improvement
    corecore