179 research outputs found

    An Energetic Variational Approach for ion transport

    Full text link
    The transport and distribution of charged particles are crucial in the study of many physical and biological problems. In this paper, we employ an Energy Variational Approach to derive the coupled Poisson-Nernst-Planck-Navier-Stokes system. All physics is included in the choices of corresponding energy law and kinematic transport of particles. The variational derivations give the coupled force balance equations in a unique and deterministic fashion. We also discuss the situations with different types of boundary conditions. Finally, we show that the Onsager's relation holds for the electrokinetics, near the initial time of a step function applied field

    Behavior of different numerical schemes for population genetic drift problems

    Full text link
    In this paper, we focus on numerical methods for the genetic drift problems, which is governed by a degenerated convection-dominated parabolic equation. Due to the degeneration and convection, Dirac singularities will always be developed at boundary points as time evolves. In order to find a \emph{complete solution} which should keep the conservation of total probability and expectation, three different schemes based on finite volume methods are used to solve the equation numerically: one is a upwind scheme, the other two are different central schemes. We observed that all the methods are stable and can keep the total probability, but have totally different long-time behaviors concerning with the conservation of expectation. We prove that any extra infinitesimal diffusion leads to a same artificial steady state. So upwind scheme does not work due to its intrinsic numerical viscosity. We find one of the central schemes introduces a numerical viscosity term too, which is beyond the common understanding in the convection-diffusion community. Careful analysis is presented to prove that the other central scheme does work. Our study shows that the numerical methods should be carefully chosen and any method with intrinsic numerical viscosity must be avoided.Comment: 17 pages, 8 figure

    NCART: Neural Classification and Regression Tree for Tabular Data

    Full text link
    Deep learning models have become popular in the analysis of tabular data, as they address the limitations of decision trees and enable valuable applications like semi-supervised learning, online learning, and transfer learning. However, these deep-learning approaches often encounter a trade-off. On one hand, they can be computationally expensive when dealing with large-scale or high-dimensional datasets. On the other hand, they may lack interpretability and may not be suitable for small-scale datasets. In this study, we propose a novel interpretable neural network called Neural Classification and Regression Tree (NCART) to overcome these challenges. NCART is a modified version of Residual Networks that replaces fully-connected layers with multiple differentiable oblivious decision trees. By integrating decision trees into the architecture, NCART maintains its interpretability while benefiting from the end-to-end capabilities of neural networks. The simplicity of the NCART architecture makes it well-suited for datasets of varying sizes and reduces computational costs compared to state-of-the-art deep learning models. Extensive numerical experiments demonstrate the superior performance of NCART compared to existing deep learning models, establishing it as a strong competitor to tree-based models

    A Bubble Model for the Gating of Kv Channels

    Full text link
    Voltage-gated Kv channels play fundamental roles in many biological processes, such as the generation of the action potential. The gating mechanism of Kv channels is characterized experimentally by single-channel recordings and ensemble properties of the channel currents. In this work, we propose a bubble model coupled with a Poisson-Nernst-Planck (PNP) system to capture the key characteristics, particularly the delay in the opening of channels. The coupled PNP system is solved numerically by a finite-difference method and the solution is compared with an analytical approximation. We hypothesize that the stochastic behaviour of the gating phenomenon is due to randomness of the bubble and channel sizes. The predicted ensemble average of the currents under various applied voltages across the channels is consistent with experimental observations, and the Cole-Moore delay is captured by varying the holding potential
    • …
    corecore