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Abstract

A thermodynamically consistent phase-field model is introduced for simulating mo-
tion and shape transformation of vesicles under flow conditions. In particular, a general
slip boundary condition is used to describe the interaction between vesicles and the wall
of the fluid domain. A second-order accurate in both space and time C0 finite element
method is proposed to solve the model governing equations. Various numerical tests
confirm the convergence, energy stability, and conservation of mass and surface area
of cells of the proposed scheme. Vesicles with different mechanical properties are also
used to explain the pathological risk for patients with sickle cell disease.

Keywords— Vesicle; Local inextensibility; Energy stable scheme; Narrow channel.

1 Introduction
Studying dynamic motion and shape transformation of biological cells is always a point of interest
in cell biology, because the shapes of the cells usually relate to their function. For example, many
blood-related diseases are known to be associated with alterations in the geometry and membrane
properties of red blood cells [64]. Red blood cells in diabetes or sepsis patients exhibit impaired
cell deformability [22, 50]. During blood clot formation, an indicator of platelet activation is its
shape change by forming filopodia and lamellipodia. Notably, platelets shape changes facilitate
their adhesion to the site of vascular injury and cohesion with other platelets or erythrocytes [62,
2].
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In in silico study, it is vitally important to establish a proper model [41, 8, 15, 46] of cell
membranes for analyzing the dynamical shape transformation of cells in addition to modeling intra-
cellular and extracellular fluids. Various mathematical models were introduced for predicting cell
morphology and function. Dissipative particle dynamics (DPD) [39] models of red blood cell were
developed in [49, 39, 48], and were used to study effects of red blood cells on platelet aggregation
[49]. Models based on interface tracking or capturing such as level set method [70, 69, 58] were also
developed [7, 35, 31, 30] to take into consideration the fluid-cell-structure interaction. In numerical
treatment, various methods such as immersed boundary method [36, 60, 47, 65, 68], immersed in-
terface method [32, 37], and fictitious domain method [30] using finite difference or finite element
formulation have been introduced to solve governing equations of these models.

Recently the phase-field approach has become one of the popular choices for modeling compli-
cated evolution of various structures presented in biological problems [19, 8, 41] as well as problems
in other scientific disciplines [40, 13, 66, 71]. The phase-field method considers the material interface
as a diffuse layer instead of a sharp discontinuity. This regularization can be rigorously formulated
through a variational process. The main advantages of the phase-field method are twofolds. The
phase-field order parameter identifying the diffuse interface is treated as an additional primary un-
known of the problem to be solved on the whole domain. Consequently, interface transformations
are predicted without the necessity of a remeshing algorithm to treat the evolution of the interface.
The physics mediating the interface dynamics can be easily incorporated into the phase-field models.

Lots of phase-field type vesicle models have been introduced lately [33, 79, 42, 17, 14, 18, 6, 80, 9,
67] . Mechanical properties of the vesicle membrane such as bending stiffness and inextensibility can
be modeled rigorously by the phase-field theory [17, 15, 16, 19] to establish a more comprehensive
model. For instance, the bending energy Eelastic of bending resistance of the lipid bilayer membrane
Γ in the isotropic case (neglecting the proteins and channels on the membrane) given in the form
of the Helfrich bending energy

Eelastic =

∫
Γ

k

2
H2ds , (1)

can be approximated by a modified elastic energy defined on the whole domain in the phase-field
formulation [12, 18, 15, 16]. Here k is the bending modulus and H is the mean curvature of the
membrane. Constraints conserving cell mass and ensuring global inextensibility of cell membrane are
frequently introduced into vesicle models to keep the mass and surface area of the vesicle constant
[19, 1].

The focus of this paper is to model flowing vesicles interacting with the domain boundaries which
mimics scenarios such as red blood cells passing a narrowed blood vessel. This involves considering
a moving contact line problem. The first goal of this paper thus is to derive a thermodynamically
consistent phase-field model for vesicles’ motion and shape transformation in a closed spatial domain
by using an energy variational method [61, 72, 74, 27]. All the physics taken into consideration are
introduced through definitions of energy functionals and dissipation functional, together with the
kinematic assumptions of laws of conservation. Besides the energy and dissipation terms defined
on the bulk region of the domain, terms accounting for boundary effects are also added to the
functionals. Then performing variation of these functionals yields an Allen-Cahn-Navier-Stokes
(ACNS) system [67] with Allen-Cahn general Navier boundary conditions (GNBC) [52]. This is
in contrast to most previous works [15, 16, 9] in which dynamic boundary condition was rarely
derived during the course of model derivation. Dirichlet or Neumann type conditions were simply
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added to these models at the end to close the governing equations [1, 19, 18]. Moreover, in our
model derivation, the incompressibility of the fluid, the local and global inextensibility of the vesicle
membrane and the conservation of vesicle mass are taken into account by introducing two Lagrangian
multipliers, hydrostatic pressure p and surface pressure λ [47] and penalty terms, respectively.

The second goal of this paper is to propose an efficient and accurate numerical scheme for solving
the obtained fourth-order nonlinear coupled partial differential equation (PDE) system. Over the
past decades, a lot of schemes have been developed for Allen-Cahn- or Cahn-Hilliard-Navier-Stokes
systems [8, 11, 76, 13, 10, 28, 78, 77]. As for systems such as vesicle models introduced in the
current and other works which are more sophisticated than Allen-Cahn- or Cahn-Hilliard-Navier-
Stokes systems, backward Euler time discretization method is frequently used [1, 15, 24, 23] leading
to a first-order accurate scheme. Later on, decoupled energy stable schemes are proposal by Chen
& Yang in [9], and Francisco & Giordano [25] by introducing explicit, convective velocities. In the
current work, an efficient, energy-law preserving (thus energy stable) and second-order accurate C0

finite element (FE) scheme is proposed to solve the obtained vesicle system using ideas introduced
in [28]. The key idea of this scheme is to utilize the mid-point method in time discretizaiton to
ensure the accuracy in time, and the form of the law of the discrete energy dissipation is same as
that of the continuous model. In order to properly treat the term related to inextensibility of the
membrane, a relaxation term of local inextensibility as in [1] is introduced. The numerical study
of convergence confirms the proposed scheme is second-order convergence in both time and space.
Furthermore vesicle deformation simulations illustrate it is energy stable, and numerically conserves
mass and surface area of vesicles.

The introduction of the GNBC in this work makes it possible to study the more complicated
fluid-structure interaction problems. In this paper, the developed model is applied to studying
vesicles passing narrow channels. The results confirm that the more rounded the vesicles (smaller
surface-volume ratio) are, the more likely the vesicles form lockage when they pass through narrow
channels. It is also worth noting that it is critical to include the local inextensibility of the vesicle
membrane in the model when studying this type of problems. Without the local inextensibility, the
vesicle membrane can be falsely stretched or compressed. Lastly, although membrane structures of
vesicles and blood cells are quite different, a blood cell in many studies can be treated as an elastic
capsule with bending rigidity, in which the membrane is impenetrable to both interior and exterior
fluids. Therefore our model developed for vesicles can be readily applied for studying a vast body
of blood cells related problems [44].

The rest of paper is organized as follows. Section 2 of the paper begins with introducing basic
dynamical assumptions that have been used in many papers [19, 51], and is devoted to model
derivation. Dimensionless model governing equations and the energy decaying law of the model are
presented in Section 3. In Section 4, the numerical scheme solving the proposed model is developed,
and its energy law is given. Numerical simulation results are described in Section 5 to confirm the
energy law of the numerical scheme and the feasibility of our model. A case study of vesicle passing
through a narrow channel is shown, which is to simulate the motion of red blood cells in blood
vessel. Conclusions are drawn in Section 6.
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2 Model Derivation
Derivation of the model for simulating a flowing vesicle deforming in a channel filled with extracel-
lular fluid is presented in this section. The phase-field label function φ is introduced to track the
motion of the vesicle, where φ(x) = ±1 denotes the intracellular and extracellular space, and φ = 0
is the vesicle membrane or interface.

The model is derived using an energy variational method [61]. It begins with defining two
functionals, namely, the total energy and dissipation of the system, and introducing the kinematic
equations based on physical laws of conservation. The specific forms of the fluxes and stresses in
the kinematic equations are obtained by taking the time derivative of the total energetic functional
and comparing with the defined dissipation functional. More details of this method can be found
in [61, 74].

In what follows, we detail steps of using this method to derive the model. We first make the
following assumptions about mass and momentum conservation of the mixture of extracellular fluid
and vesicle and the interface inextensibility, and assume that the dynamics of the phase field function
φ follows an L2 gradient flow:

∂φ
∂t +∇ · (uφ) = qφ ,

ρ(∂u∂t + (u · ∇)u) = ∇ · ση + Fφ ,
∇ · u = 0 ,
δγ(P : ∇u) = 0 .

(2)

with forms of flux qφ, stress ση and body force density Fφ to be determined. Here ρ and u are the
density and velocity of the mixture, respectively. The first equation is the Allen-Cahn type equation
to track the interface. The second equation is the conservation of momentum. The third equation
accounts for the fluid incompressibility (or mass conservation).

The last equation is related to the local inextensibility of the vesicle membrane which prevents
from stretching on any point of the vesicle membrane surface [5]. In the sharp interface model, the
local inextensibility (or mass conservation on the interface) is represented by ∇Γ · u = 0 defined on
the interface Γ [42, 44]. This equation is equivalent to P : ∇u = 0 where the projection operator P
is defined to be (I − nm ⊗ nm), and nm = ∇φ

|∇φ| is the unit outward normal vector of the interface
when it is defined as an implicit surface by the level function. In the phase-field formulation, the
interface is modelled as a diffuse layer. This is different from the sharp interface concept. For
computational convenience using phase-field formulation, this local inextensibility constraint on the
interface Γ is extended to the domain Ω by multiplying with a scalar function

δγ =
1

2
γ2|∇φ|2 , (3)

where ∇φ is nonzero only in the diffuse interface layer, and γ is related to the thickness of the
diffuse interface layer.

On the wall boundary ∂Ωw of the domain, the following boundary conditions are assumed
u · n = 0 ,
uτ · τi = fτi ,

φ̇ = ∂φ
∂t + u · ∇Γφ = JΓ ,

f = 0 ,
∂nλ = 0 ,

(4)
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where an Allen-Cahn type boundary condition is employed for φ, uτ = u− (u ·n)n is the fluid slip
velocity with respect to the wall, τi, i = 1, 2 are the tangential directions on the wall surface (2D),
and ∇Γ = ∇− n(n · ∇) is the surface gradient operator on the boundary ∂Ωw. Here the subscript
Γ refers to ∂Ωw, and n is its unit outward normal. The meaning of equation f = 0 will be explicit
after definition of the interface curvature (see Eq. (8)). λ, ∂nλ, JΓ are not defined.

The rest part of this section is devoted to deriving the exact forms of qφ, ση, Fφ and JΓ using the
energy variational method [61, 74]. By following the works in [67, 17], the total energy functional
Etotal of a cell- (or vesicle-) fluid system is defined to be the sum of the kinetic energy Ekin, the cell
membrane energy Ecell and the specific wall energy Ew due to the cell-wall interaction

Etotal = Ekin︸︷︷︸
Macroscale

+Ecell + Ew︸ ︷︷ ︸
Microscale

. (5)

The kinetic energy accounts for the transport of the cell-fluid mixture, and is defined as:

Ekin =

∫
Ω

(
1

2
ρ|u|2

)
dx , (6)

where ρ is the macroscale density of the mixture, and is assumed to be equal to a constant ρ0 in
this work (matched density case).

The cell energy Ecell is defined to be the sum of the bending energy Ebending and two penalty
terms in order to preserve the total volume and surface area of the cell,

Ecell = Ebend +
Mv

2

(V (φ)− V (φ0))2

V (φ0)
+
Ms

2

(S(φ)− S(φ0))2

S(φ0)
, (7)

where V (φ) =
∫

Ω φdx is the volume difference of the cell-fluid system and the value of S(φ) =∫
Ω
G(φ)
γ dx is used to measure the surface area of the cell. Mv and Ms are cell volume and surface

area constraint coefficients, respectively.
If the cell membrane is assumed to be isotropic and only composed of lipid bilayer, the bending

energy of the bending resistance of the cell membrane can be modeled by the Helfrich bending
energy [17]. If we let G(φ) =

∫
Ω
γ2|∇φ|2

2 + (1−φ2)2

4 dx be the free energy of the membrane surface,
the curvature of membrane can be calculated as

f(φ) :=
δG

δφ
= −γ2∆φ+ (φ2 − 1)φ . (8)

Then the Helfrich bending energy can be regularized as follows

Ebend =

∫
Ω

κ̂B
2γ

∣∣∣∣f(φ)

γ

∣∣∣∣2 dx , (9)

where κ̂B is the bending modulus.
In order to account for the interaction between vesicle and the channel wall ∂Ωw, when the

vesicle passes through the fluid flow channel, the wall free energy Ew is introduced

Ew =

∫
∂Ωw

fw(φ)ds , (10)
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where fw is the vesicle-wall interaction energy density. Here we borrow the idea introduced in
moving contact lines models [53, 51] to account for hydrophobic or hydrophilic property of the
channel wall

fw(φ) = −σ
2

sin

(
φπ

2

)
cos(θs) , (11)

with the static contact angle θs [56, 55]. When θs is an acute angle, it means there is adhesion force
between vesicles and walls. The term sin(φπ2 ) is a smooth interpolation between ±σ

2 .
The chemical potential µ is obtained by taking the variation of Ebulk = Ekin+Ecell with respect

to φ,

µ =
δEbulk
δφ

=
κ̂B
γ3
g(φ) +Mv

V (φ)− V (φ0)

V (φ0)
+
Ms

γ

S(φ)− S(φ0)

S(φ0)
f(φ) , (12)

where g(φ) = −γ2∆f + (3φ2 − 1)f(φ).
It is assumed in the present work that dissipation of the system energy is due to fluid viscosity,

friction on the wall, and interfacial mixing due to diffuse interface representation. Accordingly, the
total dissipation functional ∆ is defined as follows

∆ =

∫
Ω

2η|Dη|2dx+

∫
Ω

1

M φ
|qφ|2dx+

∫
∂Ωw

βs|uτ |2ds+

∫
∂Ωw

κΓ|JΓ|2ds , (13)

where the first term is the macroscopic dissipation induced by the fluid viscosity withDη = 1
2 [∇u+

(∇u)T ], the second term is the microscopic dissipation induced by the diffuse interface, the third
term is the boundary friction dissipation, and the last term is the dissipation induced by the diffuse
interface contacting the wall.

By taking the time derivative of the total energy functional (5), it is obtained that

dEtotal
dt

=
d

dt
Ekin +

d

dt
Ecell +

d

dt
Ew (14)

≡ I1 + I2 + I3 . (15)

This leads to

I1 =
d

dt

∫
Ω

ρ|u|2

2
dx

=

∫
Ω

1

2

∂ρ

∂t
|u|2dx+

∫
Ω
ρ
∂u

∂t
· udx

=

∫
Ω

1

2

∂ρ

∂t
|u|2dx+

∫
Ω
ρ
du

dt
· udx−

∫
Ω

(ρu · ∇u) · udx

=

∫
Ω

1

2

∂ρ

∂t
|u|2dx+

∫
Ω
ρ
du

dt
· udx+

∫
Ω
∇ · (ρu)

|u|2

2
dx

=

∫
Ω

(∇ · ση) · udx+

∫
Ω
Fφ · udx+

∫
Ω
λδγP : ∇udx−

∫
Ω
pI : ∇udx

= −
∫

Ω
((ση + pI) : ∇u)dx+

∫
Ω
Fφ · udx−

∫
Ω
∇ · (λδγP) · udx
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+

∫
∂Ωw

((ση + λδγP) · n) · uτdS , (16)

where p and λ are introduced as Lagrange multipliers accounting for fluid incompressiblity and local
inextensibility of the cell membrane, respectively. δγ is defined in Eq. (3). The velocity boundary
conditions in (4) and integration by parts are utilized in the above derivation from step 4 to step 6.

Using the first equation in Eq. set (2), and the definitions of g(φ) and f(φ) give rise to

I2 =
d

dt

∫
Ω

κ̂B
2γ

∣∣∣∣f(φ)

γ

∣∣∣∣2 dx+
d

dt

(
Mv

2

(V (φ)− V (φ0))2

V (φ0)
+
Ms

2

(S(φ)− S(φ0))2

S(φ0)

)

=

∫
Ω

κ̂B
γ

f

γ2

∂f

∂t
dx+Mv

∫
Ω

V (φ)− V (φ0)

V (φ0)

∂φ

∂t
dx+Ms

∫
Ω

S(φ)− S(φ0)

S(φ0)

∂S(φ)

∂t
dx

=

∫
Ω

κ̂B
γ

f

γ2

(
−γ2∆

(
∂φ

∂t

)
+ (3φ2 − 1)

∂φ

∂t

)
dx

+Mv

∫
Ω

V (φ)− V (φ0)

V (φ0)

∂φ

∂t
dx

+Ms

∫
Ω

S(φ)− S(φ0)

S(φ0)

1

γ

(
γ2∇φ · ∇∂φ

∂t
+ (φ2 − 1)φ

∂φ

∂t

)
dx

=

∫
Ω

κ̂B
γ3

(
−γ2∆f + (3φ2 − 1)f

) ∂φ
∂t
dx

+Mv

∫
Ω

V (φ)− V (φ0)

V (φ0)

∂φ

∂t
dx

+Ms

∫
Ω

S(φ)− S(φ0)

S(φ0)

1

γ

(
−γ2∆φ+ (φ2 − 1)φ

) ∂φ
∂t
dx

−
∫
∂Ωw

κ̂B
γ
f
∂

∂t
(∂nφ)ds+

∫
∂Ωw

κ̂B
γ
∂nf

∂φ

∂t
ds+Ms

∫
∂Ωw

S(φ)− S(φ0)

S(φ0)
γ∂nφ

∂φ

∂t
ds

=

∫
Ω
µ
∂φ

∂t
dx−

∫
∂Ωw

κ̂B
γ
f
∂

∂t
(∂nφ)ds

+

∫
∂Ωw

κ̂B
γ
∂nf

∂φ

∂t
ds+Ms

∫
∂Ωw

S(φ)− S(φ0)

S(φ0)
γ∂nφ

∂φ

∂t
ds

=

∫
Ω
µqφdx−

∫
Ω
µu · ∇φdx

+

∫
∂Ωw

κ̂B
γ
∂nf

∂φ

∂t
ds+Ms

∫
∂Ωw

S(φ)− S(φ0)

S(φ0)
γ∂nφ

∂φ

∂t
ds . (17)

Here the second and third equations in the boundary conditions (4) and integration by parts are
used in step 4 in the above derivation.

For I3 in Eq. (14), it is easy to see that

I3 =

∫
∂Ωw

∂fw
∂φ

∂φ

∂t
ds . (18)

Combining Eqs. (16) to (18) yields

d

dt
Etotal = −

∫
Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fφ − µ∇φ−∇ · (λδγP)) · udx+

∫
Ω
µqφdx

7



+

∫
∂Ωw

((ση + λδγP) · n) · uτds+

∫
∂Ωs

L̂(φ)
∂φ

∂t
ds

= −
∫

Ω
((ση + pI) : ∇u)dx+

∫
Ω

(Fφ − µ∇φ−∇ · (λδγP)) · udx+

∫
Ω
µqφdx

+

∫
∂Ωw

((ση + λδγP) · n) · uτds+

∫
∂Ωs

L̂(φ)(−u · ∇Γφ+ JΓ)ds

= −
∫

Ω
((ση + pI) : ∇u)dx+

∫
Ω

(Fφ − µ∇φ−∇ · (λδγP)) · udx+

∫
Ω
µqφdx

+

∫
∂Ωw

((ση + λδγP) · n− L̂(φ)∇Γφ) · uτds+

∫
∂Ωw

L̂(φ)JΓds ,

(19)

where L̂(φ) =
κ̂B
γ
∂nf +Ms

S(φ)− S(φ0)

S(φ0)
γ∂nφ+

∂fw
∂φ

.

Using the energy dissipation law dEtotal
dt = −∆ [72, 20], and the definition of the dissipation

functional (13), it is obtained that
ση = 2ηDη − pI , in Ω ,
qφ = −Mφµ , in Ω ,
Fφ = µ∇φ+∇ · (λδγP) , in Ω ,

JΓ = −κ−1
Γ L̂(φ) , on ∂Ωw ,

uτi = β−1
s (−(n · (ση + λδγP) · τi) + L̂(φ)∂τiφ) , i = 1, 2, on ∂Ωw .

(20)

Here constant Mφ is called the mobility (a phenomenological parameter), κγ is the boundary mo-
bility (a phenomenological parameter) and βs is the wall friction coefficient.

To this end, the proposed phase-field model is composed of the following equations

∂φ
∂t +∇ · (uφ) = −Mφµ ,

µ = κ̂B
γ3
g(φ) +Mv

V (φ)−V (φ0)
V (φ0) + Ms

γ
S(φ)−S(φ0)

S(φ0) f(φ) ,

g(φ) = −γ2∆f + (3φ2 − 1)f(φ),
f(φ) = −γ2∆φ+ (φ2 − 1)φ ,

ρ(∂u∂t + (u · ∇)u) +∇p = ∇ · (2ηDη) + µ∇φ+∇ · (λδγP) ,
∇ · u = 0 ,
δγ(P : ∇u) = 0 ,

(21)

with the boundary conditions

u · n = 0 ,

−βsuτi = (n · (ση + λδγP) · τi)− L̂(φ)∂τiφ , i = 1, 2,
f = 0 ,

κΓ

(
∂φ
∂t + u · ∇Γφ

)
= −L̂(φ) ,

L̂(φ) = κ̂B
γ ∂nf +Ms

S(φ)−S(φ0)
S(φ0) γ∂nφ+ ∂fw

∂φ ,

∂nλ = 0 .

(22)
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3 Dimentionless Model Governing Equations and Energy
Dissipation Law

If the viscosity, length, velocity, time, bulk and boundary chemical potentials in Eqs. (21)-(22) are
scaled by their corresponding characteristic values η0, L, U , LU

η0U
L and η0U , respectively, Eqs. (21)-

(22) can be rewritten as



Re(∂u∂t + (u · ∇)u) +∇P = ∇ · (2ηD) + µ∇φ+∇ · (λδεP) , in Ω ,

∇ · u = 0 , in Ω ,

∂φ
∂t + u · ∇φ = −Mµ , in Ω ,

µ = κBg(φ) +Mv
(V (φ)−V (φ0))

V (φ0) +Ms
(S(φ)−S(φ0))

S(φ0) f(φ) , in Ω ,

f(φ) = −ε∆φ+ (φ2−1)
ε φ, g(φ) = −∆f + 1

ε2
(3φ2 − 1)f(φ) , in Ω ,

δε(P : ∇u) = 0 , in Ω ,

(23)

with the boundary conditions

κφ̇+ L(φ) = 0 , on ∂Ωw ,

L(φ) = κB∂nf + εMs
S(φ)−S(φ0)

S(φ0) ∂nφ+ αw
dfw
dφ , on ∂Ωw ,

−l−1
s uτi = τi · (2ηDη + λδεP) · n− L(φ)∂τiφ , i = 1, 2, on ∂Ωw ,

f = 0 , on ∂Ωw ,
∂nλ = 0 , on ∂Ωw ,

(24)

where V (φ) =

∫
Ω
φdx, S(φ) =

∫
Ω

ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2dx and δε = 1

2ε
2|∇φ|2. The dimensionless

constants appeared in Eqs. (23)-(24) are given by ε = γ
L , Re = ρ0UL

η0
, M = Mφη0, κB = κ̂B

L2η0U
,

k = κ̂B
η0L

, ls = η0
βsL

, αw = σ
η0U

,Ms = Ms
η0U

, andMv = MvL
η0U

.
If we define the Sobolev spaces as follows

W 1,3 = (W 1,3)2, (25)
W 1,3(Ω) =

{
u = (ux, uy)

T ∈W 1,3|u · n = 0, on ∂Ωw

}
, (26)

Wb = W 1,3(Ω)×W 1,3(Ω)×W 1,3(Ω)×W 1,3/2(Ω)×W 1,3/2(Ω)×W 1,3(Ω), (27)

and norms ‖f‖ =
(∫

Ω |f |
2dx

) 1
2 and ‖f‖w =

(∫
∂Ωw
|f |2ds

) 1
2 be the L2 norm defined in the domain

and on the domain boundary respectively, then the system (23)-(24) satisfies the following energy
law.

Theorem 3.1. If (φ, f, µ, λ, P, u) ∈ Wb are smooth solutions of the above system (23)-(24),
then the following energy law is satisfied:

d

dt
Etotal =

d

dt
(Ekin + Ecell + Ew)

9



= −2‖η1/2Dη‖2 −M‖µ‖2 − κ‖φ̇‖2w − ‖l−1/2
s uτ‖2w , (28)

where Etotal = Ekin + Ecell + Ew, Ekin =
1

2

∫
Ω
|u|2dx, Ecell =

κB
2ε

∫
Ω
|f |2dx+Mv

(V (φ)− V (φ0))2

2V (φ0)
+

Ms
(S(φ)− S(φ0))2

2S(φ0)
and Ew=αw

∫
∂Ωw

fwds.

Proof: Multiplying the first equation in Eq. (23) with u and integration by parts yield
d

dt
Ekin = −

∫
Ω

2η|Dη|2dx+

∫
∂Ωw

(ση · n) · uτds+

∫
Ω
µ∇φ · udx−

∫
Ω
λδεP : ∇udx

+

∫
∂Ωw

(λδεP · n) · uτds

= −
∫

Ω
2η|Dη|2dx−

∫
Ω
λδεP : ∇udx− l−1

s

∫
∂Ωw

|uτ |2ds

+

∫
∂Ωw

L(φ)∂τφ · uτds+

∫
Ω
µ∇φ · udx , (29)

where the slip boundary condition in Eq. (24) is applied.
Taking the inner product of the third equation in Eq. (23) with µ results in∫

Ω

∂φ

∂t
µdx+

∫
Ω
u · ∇φµdx = −M

∫
Ω
|µ|2dx . (30)

Multiplying the fourth equation in Eq. (23) with ∂φ
∂t and integration by part give rise to∫

Ω
µ
∂φ

∂t
dx = κB

∫
Ω
g
∂φ

∂t
dx+

d

dt

(
Mv

(V (φ)− V (φ0))2

2V (φ0)

)
+Ms

S(φ)− S(φ0)

S(φ0)

∫
Ω
f
∂φ

∂t
dx

= κB

∫
Ω
f
∂

∂t

(
−∆φ+

1

ε2
(φ3 − φ)

)
dx− κB

∫
∂Ωw

∂nf
∂φ

∂t
ds

+
d

dt

(
Mv

(V (φ)− V (φ0))2

V (φ0)

)
+Ms

d

dt

(
(S(φ)− S(φ0))2

2S(φ0)

)
−Ms

(
S(φ)− S(φ0)

S(φ0)

)∫
∂Ωw

ε∂nφ
∂φ

∂t
ds

=
d

dt

(
κB

∫
Ω

|f |2

2ε
dx

)
+
d

dt

(
Mv

(V (φ)− V (φ0))2

2V (φ0)

)
+Ms

d

dt

(
(S(φ)− S(φ0))2

2S(φ0)

)
−
∫
∂Ωw

L(φ)
∂φ

∂t
ds+ αw

d

dt

∫
∂Ωw

fwds

=
d

dt
(Ecell + Ew)−

∫
∂Ωw

L(φ)
∂φ

∂t
ds , (31)

where the definitions of f(φ), g(φ) and the boundary conditions of φ and f are utilized.
Multiplying the last equations with λ and integration by parts leads to∫

Ω
(λδεP) : ∇udx = 0 . (32)

Finally, the energy dissipation law (28) is obtained by combining Eqs. (29), (30), (31) and (32).
�
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4 Numerical Scheme and Discrete Energy law

4.1 Time-discrete primitive method
The numerical scheme for solving Eqs. (23)-(24) uses the mid-point method for temporal discretiza-
tion. Let ∆t denote the time step size, ()n+1 and ()n denote the value of the variables at times
(n+ 1)∆t and n∆t, respectively. The semi-discrete in time equations are as follows:



un+1−un

∆t + (un+ 1
2 · ∇)un+ 1

2 + 1
Re∇P

n+ 1
2 = 1

Re∇ · (η
n(∇un+ 1

2 + (∇un+ 1
2 )T ))

+ 1
Reµ

n+ 1
2∇φn+ 1

2 + 1
Re∇ ·

(
λn+ 1

2Pnδε
)
, in Ω ,

∇ · un+ 1
2 = 0 , in Ω ,

φn+1−φn
∆t + (un+ 1

2 · ∇)φn+ 1
2 = −Mµn+ 1

2 , in Ω ,

µn+ 1
2 = κBg(φn+1, φn) +Mv

(V (φn+1
2 )−V (φ0))

V (φ0) +Ms
(S(φn+1

2 )−S(φ0))
S(φ0) f(φn+1, φn) , in Ω ,

fn+ 1
2 = −ε∆φn+ 1

2 + 1
ε ((φ

n+ 1
2 )2 − 1)φn+ 1

2 , in Ω ,

ξε2∇ · ((φn)2∇λn+ 1
2 ) + δεPn : ∇un+ 1

2 = 0 , in Ω .

(33)

The numerical boundary conditions can be written as:



κφ̇n+ 1
2 = −Ln+ 1

2 , on ∂Ωw ,

Ln+ 1
2 = κB∂nf

n+ 1
2 +Msε

S(φn+1
2 )−S0

S0
∂nφ

n+ 1
2 + αw

fn+1
w −fnw
φn+1−φn , on ∂Ωw ,

−l−1
s u

n+ 1
2

τi = τi · (ηn(∇un+ 1
2 + (∇un+ 1

2 )T ) + λn+ 1
2 δεPn) · n

− Ln+ 1
2∂τiφ

n+ 1
2 , i = 1, 2, on ∂Ωw ,

fn+ 1
2 = 0 , on ∂Ωw ,

∂nλ
n+ 1

2 = 0 , on ∂Ωw ,

(34)

where

f(φn+1, φn) = −ε∆φn+ 1
2 +

1

4ε
((φn+1)2 + (φn)2 − 2)(φn+1 + φn) , (35)

g(φn+1, φn) =

(
−∆fn+ 1

2 +
1

ε2
(
(φn+1)2 + (φn)2 + φn+1φn − 1

)
fn+ 1

2

)
, (36)

(·)n+ 1
2 = (·)n+(·)n+1

2 and Pn = I − nnm ⊗ nnm with nnm = ∇φn
|∇φn| .

Remark 4.1. Here an extra term ξε2∇·((φn)2∇λn+ 1
2 ) is introduced to extend λ to the whole domain

as in [1]. This can be regarded as a relaxation for the local inextensibility near the membrane. The
last equation can also be derived directly by the variational method described in Section 2 by adding
an extra dissipation term

∫
Ω ξε

2|φ∇λ|2dx in the dissipation functional.

The above scheme obeys the following theorem of energy stability.

11



Theorem 4.1. If (φn,un, Pn) are smooth solutions of the above system (33)-(34), then the following
energy law is satisfied:

En+1
total − E

n
total = (En+1

kin + En+1
cell + En+1

w )− (Enkin + Encell + Enw)

=
4t
Re

(
−2‖(ηn)1/2D

n+ 1
2

η ‖2 −M‖µn+ 1
2 ‖2 − ξ‖ εφn∇λn+ 1

2 ‖2

−1

κ
‖L(φn+ 1

2 )‖2w − ‖l−1/2
s u

n+ 1
2

τ ‖2w
)
, (37)

where Entotal = Enkin + Encell + Enw with Enkin = 1
2‖u

n‖2, Encell = κB‖fn‖2
2ε + Mv

(V (φn)−V (φ0))2

2V (φ0) +

Ms
(S(φn)−S(φ0))2

2S(φ0) and Enw=αw

∫
∂Ωw

fnwds.

The following two lemmas are needed for proving Theorem 4.1.

Lemma 4.2. Let

f(φn+1, φn) = −ε∆φn+ 1
2 +

1

4ε
((φn+1)2 + (φn)2 − 2)(φn+1 + φn) . (38)

Then f(φn+1, φn) satisfies∫
Ω
f(φn+1, φn)(φn+1 − φn)dx = Sn+1 − Sn −

∫
∂Ωw

ε∂nφ
n+ 1

2 (φn+1 − φn)ds , (39)

where Sn+1 =
∫

ΩG(φn+1)dx, Sn =
∫

ΩG(φn)dx.
Proof: ∫

Ω
f(φn+1, φn)(φn+1 − φn)dx

=

∫
Ω

(
ε∆φn+ 1

2 (φn+1 − φn) +
1

4ε
((φn+1)2 + (φn)2 − 2)(φn+1 + φn)(φn+1 − φn)

)
dx

=

∫
Ω
ε∇φn+ 1

2 · ∇(φn+1 − φn)dx−
∫
∂ΩW

ε∂nφ
n+ 1

2 (φn+1 − φn)ds

+

∫
Ω

1

4ε
((φn+1)4 − 2(φn+1)2 − (φn)4 + 2(φn)2)dx

=

∫
Ω

[
ε

2
((∇φn+1)2 − (∇φn)2) +

1

4ε
(((φn+1)2 − 1)2 − ((φn)2 − 1)2)

]
dx

−
∫
∂ΩW

ε∂nφ
n+ 1

2 (φn+1 − φn)ds

=

∫
Ω

(
ε

2
(∇φn+1)2 +

1

4ε
(φn+1 − 1)2

)
dx−

∫
Ω

(
ε

2
(∇φn)2 +

1

4ε
(φn − 1)2

)
dx

−
∫
∂Ωw

ε∂nφ
n+ 1

2 (φn+1 − φn)ds

= Sn+1 − Sn −
∫
∂Ωw

ε∂nφ
n+ 1

2 (φn+1 − φn)ds .

�
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Lemma 4.3. Let

g(φn+1, φn) = −∆fn+ 1
2 +

1

ε2
((φn+1)2 + (φn)2 + φn+1φn − 1)fn+ 1

2 . (40)

Then g(φn+1, φn) satisfies∫
Ω
g(φn+1, φn)(φn+1 − φn)dx =

∫
Ω

1

2ε
((fn+1)2 − (fn)2)dx−

∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds , (41)

where fn+1 = −ε∆φn+1 + 1
ε ((φ

n+1)2 − 1)φn+1, fn = −ε∆φn + 1
ε ((φ

n)2 − 1)φn.
Proof: ∫

Ω
g(φn+1, φn)(φn+1 − φn)dx

=

∫
Ω
∇fn+ 1

2∇(φn+1 − φn)dx−
∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds

+

∫
Ω

1

ε2
fn+ 1

2 (((φn+1)2 − 1)φn+1 − ((φn)2 − 1)φn)dx

= −
∫

Ω
fn+ 1

2 ∆(φn+1 − φn)dx−
∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds

+

∫
Ω

1

ε2
fn+ 1

2 (((φn+1)2 − 1)φn+1 − ((φn)2 − 1)φn)dx

=

∫
Ω

1

ε
fn+ 1

2

(
(−ε∆φn+1 +

1

ε
((φn+1)2 − 1)φn+1)− (−ε∆φn +

1

ε
((φn)2 − 1)φn)

)
dx

−
∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds

=

∫
Ω

1

2ε
(fn+1 + fn)(fn+1 − fn)dx−

∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds

=

∫
Ω

1

2ε
((fn+1)2 − (fn)2)dx−

∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds .

�

Proof of Theorem 4.1: Multiplying the first equation in system (33) by ∆tun+ 1
2 gives∫

Ω

1

2
((un+1)2 − (un)2)dx+

∫
Ω

∆tun+ 1
2 · ((un+ 1

2∇) · un+ 1
2 )dx− ∆t

Re

∫
Ω
Pn+ 1

2∇ · un+ 1
2dx

= −∆t

Re

∫
Ω
∇un+ 1

2 : ηn(∇un+ 1
2 + (∇un+ 1

2 )T )dx+
∆t

Re

∫
Ω
un+ 1

2 · ∇φn+ 1
2µn+ 1

2dx

−∆t

Re

∫
Ω
λn+ 1

2 δεPn : ∇un+ 1
2dx+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δεPn · n) · un+ 1

2
τ ds

+
∆t

Re

∫
∂Ωw

un+ 1
2 · ηn((∇un+ 1

2 + (∇un+ 1
2 )T ) · n)ds . (42)

Multiplying the fourth equation in system (33) by φn+1−φn
Re and integration by parts lead to
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1

Re

∫
Ω
µn+ 1

2 (φn+1 − φn)dx =
κB
Re

∫
Ω

1

2ε
((fn+1)2 − (fn)2)dx

+
Mv

Re

(V (φn+1)− V0)2 − (V (φn)− V0)2

2V0
+
Ms

Re

(S(φn+1)− S0)2 − (S(φn)− S0)2

2S0

−κB
Re

∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds− Ms

Re

∫
∂Ωw

S(φn+ 1
2 )− S0

S0
ε∂nφ

n+ 1
2 (φn+1 − φn)ds . (43)

Multiplying the third equation in system (33) by µn+1
2 ∆t

Re and integration by parts yield

1

Re

∫
Ω
µn+ 1

2 (φn+1 − φn)dx+
∆t

Re

∫
Ω
µn+ 1

2 (un+ 1
2 · ∇)φn+ 1

2dx = −M∆t

Re

∫
Ω

(µn+ 1
2 )2dx . (44)

Multiplying the last equation in system (33) by λn+1
2 ∆t

Re and integration by parts give

−∆t

Re

∫
Ω
ξε2(φn)2

∣∣∣∇λn+ 1
2

∣∣∣2 dx+
∆t

Re

∫
Ω

(λn+ 1
2 δεPn) : ∇un+ 1

2dx = 0 . (45)

The discretized energy dissipation law (37) is obtained by combining Eqs. (42)-(45) and organizing
the terms according to the boundary conditions L(φ) as shown in (34). �

Remark 4.2. The semi-discrete scheme given by Eq. (33) is second-order accurate in time except
for the last equation. It can be changed to be second-order accurate as well by using φn+1/2 and
Pn+1/2. However, this change makes the Newton iteration discussed in next session very complicated.
For simplicity of computer implementation, a first-order accurate treatment for the last equation is
adopted here.

4.2 Fully-discrete C0 finite element scheme
The spatial discretization using C0 finite element is straight forward. Let Ω be the domain of
interest with a Lipschitz-continuous boundary ∂Ω. Let Wb

h ⊂Wb be a finite element space with
respect to the triangulation of the domain Ω. The fully discrete scheme for Eqs. (23)-(24) is to find
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(φh
n+1, µh

n+1, fh
n+1, λhn+1, ph

n+1,uh
n+1) ∈Wb

h, such that for any (ψh, χh, ζh,Θh, qh,vh) ∈Wh
b ,

∫
Ω

(
un+1
h −un

h
∆t + (u

n+ 1
2

h · ∇)u
n+ 1

2
h + 1

Re∇P
n+ 1

2
h

)
· vhdx = −

∫
Ω

1
Re(η

n
h(∇un+ 1

2
h + (∇un+ 1

2
h )T )) : ∇vhdx

+
∫

Ω
1
Reµ

n+ 1
2

h ∇φn+ 1
2

h · vhdx−
∫

Ω
1
Reλ

n+ 1
2

h Pnh δε : vhdx

+
∫
∂Ωw

1
Ren · (η

n
h(∇un+ 1

2
h + (∇un+ 1

2
h )T ) + λ

n+ 1
2

h Pnh δε) · vhds ,∫
Ω(∇ · un+ 1

2
h )qhdx = 0 ,∫

Ω(
φn+1
h −φnh

∆t + (u
n+ 1

2
h · ∇)φ

n+ 1
2

h )ψhdx = −
∫

ΩMµ
n+ 1

2
h ψhdx ,

∫
Ω µ

n+ 1
2

h χhdx =
∫

Ω

(
κB

1
ε2

((φn+1
h )2 + (φnh)2 + φn+1

h φnh − 1)f
n+ 1

2
h +Mv

(V (φ
n+1

2
h )−V (φ0))

V (φ0)

+Ms
(S(φ

n+1
2

h )−S(φ0))

S(G0) ( 1
4ε((φ

n+1
h )2 + (φnh)2 − 2)(φn+1

h + φnh))

)
χhdx

+
∫

Ω(κB∇f
n+ 1

2
h +Msε

(S(φ
n+1

2
h )−S(φ0))

S(G0) ∇φn+ 1
2

h ) · ∇χhdx

−
∫
∂Ωw

(κB∂nf
n+ 1

2
h +Msε

(S(φ
n+1

2
h )−S(φ0))

S(G0) ∂nφ
n+ 1

2
h )χhds ,∫

Ω f
n+ 1

2
h ζhdx =

∫
Ω ε∇φ

n+ 1
2

h · ∇ζhdx+
∫

Ω
1
ε ((φ

n+ 1
2

h )2 − 1)φ
n+ 1

2
h ζhdx−

∫
∂Ωw

ε∂nφ
n+ 1

2
h ζhds ,

−
∫

Ω ξε
2((φnh)2∇λn+ 1

2
h ) · ∇Θhdx+

∫
Ω δεP

n
h : ∇un+ 1

2
h Θhdx+

∫
∂Ωw

ξε2((φnh)2∂nλ
n+ 1

2
h )Θhds = 0 .

(46)

Theorem 4.4. If (φh
n+1, µh

n+1, fh
n+1, λh

n+1, ph
n+1,uh

n+1) ∈ Wb
h are solutions of the above

system, then the following energy law is satisfied:

En+1
total,h − E

n
total,h =

4t
Re

(
−2‖(ηnh)1/2D

n+ 1
2

η ‖2 −M‖µn+ 1
2

h ‖2 − ξ‖ εφnh∇λ
n+ 1

2
h ‖2

−1

κ
‖L(φ

n+ 1
2

h )‖2w − ‖l−1/2
s u

n+ 1
2

τ,h ‖
2
w

)
, (47)

It is easy to prove this theorem by letting vh = ∆tun+1
h , qh =

∆tpn+1
h
Re , ψh =

cn+1
h −cnh
Re , χh =

∆tµnh+1
Re ,Θh =

∆tλn+1
h
Re and following the process of proving Theorem 4.1.

4.3 Linearization and unique solvability
Note that the energy stable scheme (46) is a coupled nonlinear system. Newton’s method [26] is
used to solve the equations (46). First, the scheme (46) can be written into the following form:

Fn+1
h = C ,

by relocating all of the constant terms to the right-hand side (RHS) of the equations and the terms
contain unknown variables to the left-hand side (LHS), respectively. For the sake of simplification,
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we let Un+1,k = (φh
n+1,k, µh

n+1,k, fh
n+1,k, λh

n+1,k,uh
n+1,k, ph

n+1,k) be the solution at time (n +
1)∆t in the kth iteration of Newton’s method, and the variations be

(δU)n+1,k = ((δφh)n+1,k+1, (δµh)n+1,k+1, (δfh)n+1,k+1, (δλh)n+1,k+1, (δuh)n+1,k+1, (δph)n+1,k+1) ,

where (δ·) stands for the amount of change of the value, (δ·)n+1,k = (·)n+1,k+1− (·)n+1,k . Newton’s
method can be formally written as:

Fn+1
h (Un+1,k) +∇Un+1,kFn+1

h · (δU)n+1,k = C(Un) .

The solution is updated by Un+1,k+1
h = Un+1,k

h + δUn+1,k
h , where Un+1,0 = Un. Then we have the

following theorem for the solvability.

Theorem 4.5. If the time step ∆t is small enough, then the scheme (46) is uniquely solvable.

Proof : From the last three equations we find µn+1
h = µ(φn+1

h ), fn+1
h = f(φn+1

h ), λn+1
h = λ(un+1

h ).
With the first and the second equations, Pn+1

h can be expressed as Pn+1
h = P (un+1

h , φn+1
h ). Then

the first and the third equations can be solved separately. Applying Newton’s method to the first
three equations, we have their linearized form:

F(un+1,k
h , φn+1,k

h ) +∇
un+1,k
h ,φn+1,k

h
F(un+1,k

h , φn+1,k
h ) · (un+1,k+1

h − un+1,k
h , φn+1,k+1

h − φn+1,k
h )T = C (48)

Note that un+1,k+1
h = (un+1,k

h , vn+1,k+1
h ). Multiplying ∆t to (48) yieldsI −∆tA11 ∆tA12 ∆tA13

∆tA21 I −∆tA22 ∆tA23

∆tA31 ∆tA32 I −∆tA33


u

n+1,k+1
h

vn+1,k+1
h

φn+1,k+1
h

 = C′ (49)

where
A11 = 1

4(un+1,k
h ∂x,h+∂x,hu

n+1,k
h +unh∂x,h+∂x,hu

n
h+∂y,hv

n+1,k
h )− 1

2Re(2∂x,h(ηnh∂x,h)+∂y,h(ηnh∂y,h))+

1
2Re

∂h(∂x,hP
n+1,k
h )

∂hu
n+1,k
h

− 1
4Re

∂h(∂x,h(λn+1,k
h (∂x,hφ

n
h)2))+∂y,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂un+1,k
h

,

A12 = 1
4u

n+1,k
h ∂y,h− 1

2Reη
n
h∂x,h∂y,h+ 1

2Re

∂h(∂x,hP
n+1,k
h )

∂hv
n+1,k
h

− 1
4Re

∂h(∂x,h(λn+1,k
h (∂x,hφ

n
h)2))+∂y,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂vn+1,k
h

,

A13 = − 1
4Re(µ

n+1,k
h ∂x,h +

∂µn+1,k
h

∂φn+1,k
h

∂x,hφ
n+1,k
h + µnh∂x,h +

∂µn+1,k
h

∂φn+1,k
h

∂x,hφ
n
h) ,

A21 = 1
4v

n+1,k
h ∂x,h− 1

2Reη
n
h∂x,h∂y,h+ 1

2Re

∂h(∂y,hP
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h )

∂hu
n+1,k
h

− 1
4Re

∂h(∂y,h(λn+1,k
h (∂y,hφ

n
h)2))+∂x,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)
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h

,

A22 = 1
4(vn+1,k

h ∂y,h+∂y,hv
n+1,k
h +vnh∂y,h+∂y,hv

n
h +∂x,hu

n+1,k
h )− 1

2Re(∂x,h(ηnh∂x,h)+2∂y,h(ηnh∂y,h))+

1
2Re

∂h(∂y,hP
n+1,k
h )

∂hv
n+1,k
h

− 1
4Re

∂h(∂y,h(λn+1,k
h (∂y,hφ

n
h)2))+∂x,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂vn+1,k
h

,

A23 = − 1
4Re(µ

n+1,k
h ∂y,h +

∂µn+1,k
h

∂φn+1,k
h

∂y,hφ
n+1,k
h + µnh∂y,h +

∂µn+1,k
h

∂φn+1,k
h

∂y,hφ
n
h) ,

A31 = 1
4∂x(φn+1,k

h + φnh) ,
A32 = 1

4∂y(φ
n+1,k
h + φnh) ,

A33 = 1
4((un+1,k

h + unh)∂x,h + (vn+1,k
h + vnh)∂y,h) +M∂µn+1,k

h

∂φn+1,k
h

.

16



Using Gaussian elimination, left side of the above matrix system can be transformed as followsI −∆tA11 ∆tA12 ∆tA13

0 I −∆tA22 − (∆t)2(I −∆tA11)−1A21A12 ∆tA23 − (∆t)2(I −∆tA11)−1A21A13

0 0 A′33

(50)

Where A′33 = I − ∆tA33 − (∆t)2(I − ∆tA22 − (∆t)2(I − ∆tA11)−1A21A12)−1A32A23. C,C ′ are
constant matrices. When ∆t is small enough, I − ∆tAii(i = 1, 2, 3) is invertible. Thus the given
matrix is invertible, we can obtain the unique solution of (un+1,k+1

h , φn+1,k+1
h ) with given boundary

condition, which means the equation (46) is uniquely solvable. �

5 Simulation Results
Numerical simulations using the model introduced in the paper are presented in this section. The
first example is used to illustrate the convergence and energy stability of the proposed numerical
scheme. Then feasibility of the proposed model and the model simulation scheme to studying
vesicle motion and shape transformation is assessed by cell tank treading and tumbling tests. The
last simulation is devoted to studying effects of mechanical and geometric properties of a vesicle on
its deformability when it passes through a narrow channel.

5.1 Convergence study
The initial condition of the convergence test is set to be a 2D tear shape vesicle in a closed cube
with intercellular and extracellular fluid velocity being 0. The initial conditions are:

φ0(x) =

{
−tanh[(15(y − 0.185)(y − 0.065)− x+ 0.125)/

√
2ε], x < 0.125

−tanh[(
√

(x− 0.125)2 + (y − 0.125)2 − 0.06)/
√

2ε], x >= 0.125,
u0 = (0, 0).

(51)

Thanks to the bending force of the cell membrane, the shape of the vesicle gradually transforms
into a perfect circle to minimize the total energy (see Figure 1). The parameter values used for this
simulation are chosen as follows: Re = 2 × 10−4, M = 5 × 10−5, κB = 8 × 10−1, ε = 2.5 × 10−2,
Mv = 20,Ms = 2, ξ = 1.6× 105, κ = 8× 10−10, αw = 2× 109, ls = 5× 10−3.

In the simulations, the numerical solution computed with a mesh size h = 1/240 is treated as
the reference solution or “the true solution”. As shown in Table 1, our scheme is a second-order
accurate in space.

The time convergence rate of the scheme is obtained by comparing the numerical errors cal-
culated using each pair of successively reduced time step sizes. The purpose of doing so is to
eliminate the influence from the error of the reference solution which is also a numerical result.
Larger Reynolds number Re and interface thickness ε, and a smoother initial profile of the interface
are applied to ensure that the convergence rate is not affected by any sharp changes in the phase
field label function φ(x). Results in Table 2 confirm that our scheme is a also second-order accurate
in time.
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Figure 1: Relaxation of a tear shape vesicle.

Spacial mesh
size h P2 Element

Err(ux)
Convergence
Rate(ux)

Err(uy)
Convergence
Rate(uy)

Err(φ) Convergence
Rate(φ)

1/47 1.3e-1 1.5e-1 1.4e-2
1/71 8.3e-2 1.15 7.6e-2 1.71 6.1e-3 1.97
1/107 3.8e-2 1.94 3.7e-2 1.83 2.3e-3 2.45
1/160 1.5e-2 2.35 1.3e-2 2.59 5.7e-4 3.42

Table 1: L2 norm of the error and convergence rate for velocity u = (ux, uy), phase-field
function φ, at time t = 0.02 with both intercellular and extracellular fluid viscosity being 1.

Remark 5.1. During the convergence test, we mainly focus on the convergence rates of the velocity
and the phase-field function. The local inextensibility is neglected, and only the global area and
volume constraints are taken into consideration.

Finally, the energy law (Theorem 4.1) and conservation of mass and surface area of vesicles
are tested by simulating the relaxation of a bent vesicle. The vesicle gradually evolves back to its
equilibrium biconcave shape. Figure 2 shows the snapshots of the vesicle profile at different times
t = 0, 0.25, 0.5 and 1.25. The parameter values used here are:

Re = 2 × 10−4, M = 2.5 × 10−3, κB = 2, ε = 7.5 × 10−3, Mv = 20, Ms = 2, ξ = 7.1 × 104,
κ = 2× 10−10, αw = 2× 109, ls = 0.5.

The initial conditions are:

φ0(x) =

{
−tanh[(5(y − 0.7)(y − 0.3)− x+ 0.5)/

√
2ε], x < 0.5

−tanh[(400(y − 0.7)(y − 0.3)(y − 0.5)2 + x− 0.5)/
√

2ε], x >= 0.5,
u0 = (0, 0).

(52)

The changes of vesicle mass and surface area and the change of total discrete energy of this test
case computed by the scheme (Eqs. (23)-(24)) are shown in Figure 3. It is evident that the vesicle
mass and surface area are almost perfectly preserved, and the total energy decays over the course
of time as expected.
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time step ∆t P2 Element

Err(ux)
Convergence
Rate(ux)

Err(uy)
Convergence
Rate(uy)

Err(φ) Convergence
Rate(φ)

0.025 - - -
0.0125 8.12e-6 8.13e-6 9.92e-6
0.00625 2.90e-6 1.49 2.97e-6 1.45 2.42e-6 2.04
0.003125 1.03e-6 1.48 1.07e-6 1.48 5.98e-7 2.01
0.0015625 2.53e-7 2.03 2.60e-7 2.03 1.49e-7 2.01

Table 2: L2 norm of the error and convergence rate for velocity u = (ux, uy), phase-field
function φ, at time t = 0.05 with both intercellular and extracellular fluid viscosities being
1.

Figure 2: Relaxation of a bent vesicle. The fluid viscosities are 1 and 50 for intercellular and
extracellular fluids, respecfively.

5.2 Tank treading and tumbling
The vesicle motion in a Couette flow changes with respect to the ratio of the viscosities ηin and
ηout of intracellular and extracellular fluids [38, 4, 21, 30]. When this viscosity ratio is small, the
vesicle is prone to move in the tank treading mode; while the tumbling mode is preferred when the
viscosity ratio is large. The parameter values utilized for this vesicle motion simulation are set as
follows:
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Figure 3: The test case of relaxation of a bent vesicle. Left: Change of mass and surface
area vs. time; Right: Change of discrete energy vs. time.

Re = 2× 10−4, δε = |∇φn|2,M = 10−3, κB = 5× 10−3, ε = 7.5× 10−3,Mv = 20,Ms = 200,
ξ = 1.78× 107, κ = 2× 10−12, αw = 2× 109, ls = 0.2.

The upper and bottom walls of the domain are set to move in opposite direction horizontally
with velocities −20 and 20, respectively. The simulation domain is 2×1, and the initial shape of the
vesicle is chosen to be an ellipse with eccentricity

√
3. The ratios of viscosities of the intracellular

and extracellular fluids are set to be 1 : 1 and 1 : 500, respectively. Figures 4 and 5 show the
interfaces of tank treading vesicle (low viscosity ratio case) and tumbling vesicle (high viscosity
ratio case) and corresponding fluid velocity fields at different times, respectively. A point on the
interface (black solid) is tracked to illustrate these two different types of motion. For the tank
treading motion, the angle between the long axis of the vesicle and horizontal axis is fixed when
the vesicle is at equilibrium, but the tracer point rotates in a counter clockwise direction along the
membrane. For the tumbling motion, the vesicle keeps rotating and the tracer point does not move
with respect to the membrane shape.

Remark 5.2. Tracking of the marker point (the black solid dot) is done by the following steps:
1. Determine a marker point P that is located on the interface with coordinate (x, y);
2. Compute the velocity u(P ) = (ux(P ), uy(P )) of the marker point by interpolation;
3. Update the marker point position at the next time point by (x+ ux(P )∆t, y + uy(P )∆t);
4. Go to step 2.
This tracking gives the trajectory of the marker point.

Next, simulation result of tumbling motion of a rigid ellipse is compared with the theoretical
solution obtained using Jeffery’s orbit theory [34]. Specifically, the angle between the long axis of
the ellipse and the horizontal axis is compared. As shown in Figure 6, our simulation result is in
close agreement with the analytical Jeffery orbit.

Remark 5.3. The long axis of the rigid ellipse during the tumbling motion is determined as follows:
1. Determine the interface location of the ellipse by φ = 0;
2. Find the point on the interface that is farthest away from the center of the vesicle in upper

domain;
3. Match these two points and the line is considered as the long axis of the ellipse.
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Figure 4: Tank treading with viscosity ratio 1 : 1. The orientation of the vesicle and the
velocity field are kept stable when the system comes to equilibrium. The tracer point (in
black) on the membrane rotates in the clockwise direction along the vesicle.

Since the ellipse is located at the center of the domain at the initial time point, and the motion
of the fluid is centrosymmetric according to the specified boundary condition, it is expected that
the center of the ellipse is kept at the center of the domain Ω. Therefore the determination of the
long axis of the ellipse based on its geometry character is acceptable.
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Figure 5: Tumbling with viscosity ratio 1:500. The vesicle keeps rotating in the flow. Position
of the tracer point (in black) is fixed with respect to the vesicle membrane.

5.3 Vesicle passing through a narrow fluid channel
Finally, the calibrated model is used to study the effects of mechanical properties of the membrane of
the vesicle on its circulating through constricting micro channels [29]. The vesicle shape is described
by an ellipse with eccentricity

√
3, and the width of the squeezing section of the narrow channel is

0.3 by default. A pressure drop boundary condition is applied at the inlet(left) and outlet(right) of
the domain by setting the pressure on the inlet and outlet to be P = 50 and P = −50, respectively.
Fluid viscosity ratio is set to be 1 : 10 for extracellular and intracellular fluids, respectively. The
other parameters are as follows:
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Figure 6: Comparison between theoretical and simulation results of the flipping ellipse. The
blue line is the angle between the long axis of the ellipse and the horizontal axis predicted
by the Jeffery orbit theory, and the red circles are the angle from the simulation.

Re = 2 × 10−4, δε = 10 × |∇φn|2, M = 5 × 10−4, κB = 4 × 10−2, ε = 7.5 × 10−3, Mv = 20,
Ms = 100, ξ = 7.1× 104, κ = 4× 10−11, αw = 2× 109, ls = 5× 10−3.

Effect of the local inextensibility of vesicle membrane is assessed by comparing vesicle simulations
with and without using the local inextensibility constraint P : ∇u = 0 in the model. Snapshots of
these simulations at different times are shown in Figure 7. They illustrate that a vesicle modeled
without using the local inextensiblity can pass through the channel by introducing large extension
and deformation of its body with a relatively small value of global inextensibility coefficient Ms;
while a vesicle modeled with the local inextensibility hardly exhibits large extension and deformation
of its body and blocks the channel. This is also confirmed by Figure 8. It shows under otherwise
same conditions, the total arc length of the membrane of the vesicle modeled without the local
inextensibility increases significantly when it passes through the channel, and the vesicle with the
local inextensibilty preserves its membrane arc length well during the course of the simulation.

Although the total arc length of a vesicle without the local inextensibility and with a very large
Ms value could maintain almost unchanged as shown in 7 (c) and 8, the morphological changes of
vesicles with and without the local inextensibility are drastically different. For the vesicles modeled
without the local inextensibility, Figure 9(b,c) illustrates that the vesicle membranes are stretched
(red) or compressed (blue) everywhere, even though the total arc length of the vesicle modeled
using a large modulus Ms value could be preserved, and the vesicle forms the blockage. For the
vesicle modeled with the local inextensibility, Figure 9(c) confirms that there is almost no local
extension or compression of the membrane, which is consistent with experimental observations. All
simulations described below use the local inextensibility.

Both experiments and clinic reports have shown that the cell bending modulus and surface-
volume ratio play important roles in determining the deformability of vesicles, especially when
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(a) (b)

(c)

Figure 7: Snapshots of vesicles passing a narrowed channel with different surface area con-
straints at times t = 0.08, 2 and 4, respectively. (a)Ms = 100 with the local inextensibility;
(b)Ms = 100 without the local inextensibility; (c)Ms = 20000 without the local inexten-
sibility. The curves on the top and bottom ceiling are the wall boundary of the narrowed
channel.

24



0 1 2 3 4

time

1.4

1.5

1.6

1.7

1.8

1.9

2

a
rc

 l
e
n
g
th

low Ms with inextensibility

low Ms without inextensibility

high Ms without inextensibility

Figure 8: Total arc length of vesicle membrane with the local inextensibility (blue line), and
the total arc lengths of vesicle membranes with low (100) (red dashed line) and high (20000)
(black point) Ms and no local inextensibility, respectively, during vesicles passing through
the constriction of the micro channel with otherwise same parameter values and settings.

they pass through narrow channels [63, 45, 57]. The latest results reveal that a moderate decrease
in the surface-volume ratio has a more significant effect than varying the cell bending stiffness.
This surface-volume ratio effect is tested by increasing the ratio value slightly from 1.5 : 1 to
2 : 1. Results in Figures 10 and 11 confirm that the more rounded vesicles are much harder to
pass through the narrow channel and can easily form the blockage. This is consistent with the
experimental observations.

The effect of the bending modulus is assessed by increasing its value 10 times. The surface-
volume ratio of the vesicle is 2 : 1 in this test. Figure 11 illustrates that this more rigid vesicle can
also pass the same size channel but exhibits very different shape transformation.

6 Conclusion
In this paper, an energy variational method is used to derive a thermodynamically consistent phase-
field model for simulating vesicles motion and deformation under flow conditions. Corresponding
Allen-Cahn GNBC boundary conditions accounting for the vesicle-wall (or fluid-structure) inter-
action are also proposed by introducing the boundary dissipation and the vesicle-wall interaction
energy.

Then an efficient C0 finite element method combined with the mid-point temporal discretization
is proposed to solve the obtained model equations. Thanks to the mid-point temporal discretiza-
tion, the obtained numerical scheme is unconditionally energy stable. The numerical experiments
confirm that this scheme is second-order accurate in both space and time. Simulations of the vesicle
tank treading and tumbling motions reproduce experimental observations. And the flipping ellipse
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(a) (b)

(c)

Figure 9: Effects of the local inextensibility P : ∇u = 0. Snapshots of membrane forces
of vesicles: (a) Ms = 100 with the local inextensibility; (b) Ms = 100 without the local
inextensibility; and (c)Ms = 20000 without the local inextensibility.
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Figure 10: Side view of a vesicle with surface-volume ratio 1.5 : 1 at different times.

Figure 11: Side view of a vesicle with surface-volume ratio 2 : 1 at different times.

simulation agrees with the analytical solution well. Finally, the model is used to investigate how
vesicles’ mechanical properties affect the vesicles’ capability to pass through narrow channels. It is
shown that whether a vesicle can pass a narrow channel is largely determined by the surface-volume
ratio of the vesicle, which is consistent with in vitro experiments.

Our model can be used to study the effects of mechanical properties of membranes induced by
sickle cell disease [3] and diabetes [43]. Combining with the restricted diffusion model [54], our
model could be generalized to model the mass transfer through a semi-permeable membrane, like
oxygen delivering [65]. Also, with detailed cell-wall and cell-cell interactions submodels, our work
is applicable for blood clotting modelling [73, 75] and cell crawling [59].
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Figure 12: Side view of a vesicle with large bending modulus κB = 4 × 10−1 and surface-
volume ratio 2 : 1 at different times.
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Appendix
The detail of the derivation of the discrete energy law is given: Multiplying the first equation in
system (33) by ∆tun+ 1

2 and do integration by parts gives

RHS

=

∫
Ω

1

2
((un+1)2 − (un)2)dx+

∫
Ω

∆tun+ 1
2 · ∇(

1

2
|un+ 1

2 |2)dx

−∆t

Re

∫
Ω
Pn+ 1

2∇ · un+ 1
2dx+

∆t

Re

∫
Ωw

Pn+ 1
2un+ 1

2 · nds
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=

∫
Ω

1

2
((un+1)2 − (un)2)dx−

∫
Ω

∆t∇ · un+ 1
2 (

1

2
|un+ 1

2 |2)dx+

∫
Ωw

∆tun+ 1
2 · n(

1

2
|un+ 1

2 |2)ds

−∆t

Re

∫
Ω
Pn+ 1

2∇ · un+ 1
2dx+

∆t

Re

∫
Ωw

Pn+ 1
2un+ 1

2 · nds

LHS

= −∆t

Re

∫
Ω
∇un+ 1

2 : ηn(∇un+ 1
2 + (∇un+ 1

2 )T )dx+
∆t

Re

∫
Ω
un+ 1

2 · ∇φn+ 1
2µn+ 1

2dx

−∆t

Re

∫
Ω
λn+ 1

2 δεPn : ∇un+ 1
2dx+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δεPn · n) · un+ 1

2
τ ds

+
∆t

Re

∫
∂Ωw

un+ 1
2 · ηn((∇un+ 1

2 + (∇un+ 1
2 )T ) · n)ds . (53)

With the boundary condition un+ 1
2 · n = 0 and the constrain∇ · un+ 1

2 = 0, we have

RHS =

∫
Ω

1

2
((un+1)2 − (un)2)dx

(54)

thus we have∫
Ω

1

2
((un+1)2 − (un)2)dx

= −∆t

Re

∫
Ω
∇un+ 1

2 : ηn(∇un+ 1
2 + (∇un+ 1

2 )T )dx+
∆t

Re

∫
Ω
un+ 1

2 · ∇φn+ 1
2µn+ 1

2dx

−∆t

Re

∫
Ω
λn+ 1

2 δεPn : ∇un+ 1
2dx+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δεPn · n) · un+ 1

2
τ ds

+
∆t

Re

∫
∂Ωw

un+ 1
2 · ηn((∇un+ 1

2 + (∇un+ 1
2 )T ) · n)ds . (55)

Multiplying the third equation in system (33) by µn+1
2 ∆t

Re and do integration yield

1

Re

∫
Ω
µn+ 1

2 (φn+1 − φn)dx+
∆t

Re

∫
Ω
µn+ 1

2 (un+ 1
2 · ∇)φn+ 1

2dx = −M∆t

Re

∫
Ω

(µn+ 1
2 )2dx . (56)

Multiplying the fourth equation in system (33) by φn+1−φn
Re and integration by parts lead to

LHS =
1

Re

∫
Ω
µn+ 1

2 (φn+1 − φn)dx (57)

with (4.2) and (4.3) we have the following result on the right hand side:

κB
2Re

∫
Ω
g(φn+1, φn)(φn+1 − φn)dx

= − κB
2Reε

∫
Ω

(fn+1)2 − (fn)2dx+
κB
Re

∫
Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds
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Ms

Re

S(φn+ 1
2 )− S(φ0)

S(φ0)

∫
Ω
f(φn+1, φn)(φn+1 − φn)dx

=
Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)
(S(φn+1)− S(φn))

−Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)

∫
Ωw

ε∂nφ
n+ 1

2 (φn+1 − phin)ds

=
Ms

Re

S(φn+1)2 − S(φn)2 − 2S(φ0)S(φn+1) + 2S(φ0)S(φn) + S(φ0)2 − S(φ0)2

2S(φ0)

−Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)

∫
Ωw

ε∂nφ
n+ 1

2 (φn+1 − phin)ds

=
Ms

Re

(S(φn+1)− S(φ0))2 − (S(φn)− S(φ0))2

2S(φ0)

−Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)

∫
Ωw

ε∂nφ
n+ 1

2 (φn+1 − phin)ds (58)

By simple calculation we also have

Mv

Re

V (φn+ 1
2 )− V (φ0)

V0

∫
Ω

(φn+1 − phin)dx

=
Mv

Re

V (φn+1) + V (φn)− 2V (φ0)

2V (φ0)
(V (φn+1)− V (φn))

=
Mv

Re

V (φn+1)2 − V (φn)−2V (φ0)V (φn+1) + 2V (φ0)V (φn) + V (φ0)2 − V (φ0)2

2V (φ0)

=
Mv

Re

(V (φn+1)− V (φ0))2 − (V (φn)− V (φ0))2

2V (φ0)
(59)

Thus we have the equation

1

Re

∫
Ω
µn+ 1

2 (φn+1 − φn)dx

= − κB
2Reε

∫
Ω

(fn+1)2 − (fn)2dx+
κB
Re

∫
Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds

+
Ms

Re

(S(φn+1)− S(φ0))2 − (S(φn)− S(φ0))2

2S(φ0)

−Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)

∫
Ωw

ε∂nφ
n+ 1

2 (φn+1 − φn)ds

+
Mv

Re

(V (φn+1)− V (φ0))2 − (V (φn)− V (φ0))2

2V (φ0)
(60)

Where φ0 is the initial condition of phase order. V (φn) =
∫

Ω φ
ndx, S(φn) =

∫
Ω
ε
2 |∇φ

n|2+ 1
4ε((φ

n)2−
1)2dx. V (φn+ 1

2 ) = 1
2(V (φn + 1) + V (phin)), S(φn+ 1

2 ) = 1
2(S(φn + 1) + S(φn)) are considered as

constants in the integration.

Multiplying the last equation in system (33) by λn+1
2 ∆t

Re and integration by parts give
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−∆t

Re

∫
Ω
ξε2(φn)2

∣∣∣∇λn+ 1
2

∣∣∣2 dx+
∆t

Re

∫
Ωw

ξε2(φn)2λn+ 1
2∂nλ

n+ 1
2ds+

∆t

Re

∫
Ω

(λn+ 1
2 δεPn) : ∇un+ 1

2dx = 0 .(61)

With the boundary condition ∂nλn+ 1
2 = 0, we have

−∆t

Re

∫
Ω
ξε2(φn)2

∣∣∣∇λn+ 1
2

∣∣∣2 dx+
∆t

Re

∫
Ω

(λn+ 1
2 δεPn) : ∇un+ 1

2dx = 0 . (62)

(55)-(56)+(60)-(62) and relocate some terms we have

1

2
(||un+1||2 − ||un||2) +

κB
2Reε

(||fn+1||2 − ||fn||2)

+
Ms

Re

(S(φn+1)− S(φ0))2 − (S(φn)− S(φ0))2

2S(φ0)
+
Mv

Re

(V (φn+1)− V (φ0))2 − (V (φn)− V (φ0))2

2V (φ0)

= −2∆t

Re
||(ηn)

1
2D

n+ 1
2

η ||2 − M∆t

Re
||µn+ 1

2 ||2 − ∆t

Re
ξ||ε(φn)∇λn+ 1

2 ||2

+
∆t

Re

∫
∂Ωw

un+ 1
2 · ηn((∇un+ 1

2 + (∇un+ 1
2 )T ) · n)ds+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δεPn · n) · un+ 1

2
τ ds

+
Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)

∫
Ωw

ε∂nφ
n+ 1

2 (φn+1 − phin)ds+
κB
Re

∫
Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds(63)

With boundary conditions: on ∂Ωw

κφ̇n+ 1
2 = −Ln+ 1

2 , (64)

Ln+ 1
2 = κB∂nf

n+ 1
2 +Msε

S(φn+ 1
2 )− S0

S0
∂nφ

n+ 1
2 + αw

fn+1
w − fnw
φn+1 − φn

, (65)

−l−1
s u

n+ 1
2

τi = τi · (ηn(∇un+ 1
2 + (∇un+ 1

2 )T ) + λn+ 1
2 δεPn) · n, (66)

− Ln+ 1
2∂τiφ

n+ 1
2 , i = 1, 2, (67)

We have the following derivations on those integration on the boundary.

∆t

Re

∫
∂Ωw

un+ 1
2 · ηn((∇un+ 1

2 + (∇un+ 1
2 )T ) · n)ds+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δεPn · n) · un+ 1

2
τ ds

+
Ms

Re

S(φn+1) + S(φn)− 2S(φ0)

2S(φ0)

∫
Ωw

ε∂nφ
n+ 1

2 (φn+1 − phin)ds+
κB
Re

∫
Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds

=
∆t

Re

∫
Ωw

|un+ 1
2

τ |(−l−1
s |u

n+ 1
2

τ |+ Ln+ 1
2∂τφ

n+ 1
2 ) +

1

Re

∫
Ωw

Ln+ 1
2 (φn+1 − φn)− αw(fn+1

w − fnw)ds

= −l−1
s

∆t

Re

∫
Ωw

|un+ 1
2

τ |2ds+
∆t

Re

∫
Ωw

Ln+ 1
2 (u

n+ 1
2

τ ∂τφ
n+ 1

2 +
φn+1 − φn

∆t
)ds+ αw(||fn+1

w ||w − ||fnw||w)

=
∆t

Re
(|| − l−

1
2

s u
n+ 1

2
τ ||w2 − 1

κ
||Ln+ 1

2 ||w2) + αw(||fn+1
w ||w − ||fnw||w) (68)

By the definition of Enkin, Encell, Enw and En+1
kin , E

n+1
cell , E

n+1
w , we can finally get the energy law

En+1
total − E

n
total = (En+1

kin + En+1
cell + En+1

w )− (Enkin + Encell + Enw)
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=
4t
Re

(
−2‖(ηn)1/2D

n+ 1
2

η ‖2 −M‖µn+ 1
2 ‖2 − ξ‖ εφn∇λn+ 1

2 ‖2

−1

κ
‖L(φn+ 1

2 )‖2w − ‖l−1/2
s u

n+ 1
2

τ ‖2w
)
, (69)
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