2,088 research outputs found

    Estimation Method of Path-Selecting Proportion for Urban Rail Transit Based on AFC Data

    Get PDF
    With the successful application of automatic fare collection (AFC) system in urban rail transit (URT), the information of passengers’ travel time is recorded, which provides the possibility to analyze passengers’ path-selecting by AFC data. In this paper, the distribution characteristics of the components of travel time were analyzed, and an estimation method of path-selecting proportion was proposed. This method made use of single path ODs’ travel time data from AFC system to estimate the distribution parameters of the components of travel time, mainly including entry walking time (ewt), exit walking time (exwt), and transfer walking time (twt). Then, for multipath ODs, the distribution of each path’s travel time could be calculated under the condition of its components’ distributions known. After that, each path’s path-selecting proportion can be estimated. Finally, simulation experiments were designed to verify the estimation method, and the results show that the error rate is less than 2%. Compared with the traditional models of flow assignment, the estimation method can reduce the cost of artificial survey significantly and provide a new way to calculate the path-selecting proportion for URT

    Discovering New Intents with Deep Aligned Clustering

    Full text link
    Discovering new intents is a crucial task in dialogue systems. Most existing methods are limited in transferring the prior knowledge from known intents to new intents. They also have difficulties in providing high-quality supervised signals to learn clustering-friendly features for grouping unlabeled intents. In this work, we propose an effective method, Deep Aligned Clustering, to discover new intents with the aid of the limited known intent data. Firstly, we leverage a few labeled known intent samples as prior knowledge to pre-train the model. Then, we perform k-means to produce cluster assignments as pseudo-labels. Moreover, we propose an alignment strategy to tackle the label inconsistency problem during clustering assignments. Finally, we learn the intent representations under the supervision of the aligned pseudo-labels. With an unknown number of new intents, we predict the number of intent categories by eliminating low-confidence intent-wise clusters. Extensive experiments on two benchmark datasets show that our method is more robust and achieves substantial improvements over the state-of-the-art methods. The codes are released at https://github.com/thuiar/DeepAligned-Clustering.Comment: Accepted by AAAI 2021 (Main Track, Long Paper

    Learning From Biased Soft Labels

    Full text link
    Knowledge distillation has been widely adopted in a variety of tasks and has achieved remarkable successes. Since its inception, many researchers have been intrigued by the dark knowledge hidden in the outputs of the teacher model. Recently, a study has demonstrated that knowledge distillation and label smoothing can be unified as learning from soft labels. Consequently, how to measure the effectiveness of the soft labels becomes an important question. Most existing theories have stringent constraints on the teacher model or data distribution, and many assumptions imply that the soft labels are close to the ground-truth labels. This paper studies whether biased soft labels are still effective. We present two more comprehensive indicators to measure the effectiveness of such soft labels. Based on the two indicators, we give sufficient conditions to ensure biased soft label based learners are classifier-consistent and ERM learnable. The theory is applied to three weakly-supervised frameworks. Experimental results validate that biased soft labels can also teach good students, which corroborates the soundness of the theory

    Symmetry dictated universal helicity redistribution of Dirac fermions in transport

    Full text link
    Helicity is a fundamental property of Dirac fermions. Yet, how it changes in transport processes remains largely mysterious. We uncover, theoretically, the rule of spinor state transformation and consequently universal helicity redistribution in two cases of transport through potentials of electrostatic and mass types, respectively. The former is dictated by Lorentz boost and its complex counterpart in Klein tunneling regime. The latter is governed by an abstract rotation group we identified, which reduces to SO(2) when acting on the plane of effective mass and momentum. This endows an extra structure foliating the Hilbert space of Dirac spinors, establishes miraculously a unified yet latent connection between helicity, Klein tunneling, and Lorentz boost. Our results thus deepen the understanding of relativistic quantum transport, and may open a new window for exotic helicity-based physics and applications in mesoscopic systems.Comment: 6 pages, 4 figure
    • …
    corecore