230 research outputs found

    Coherence-protected Quantum Gate by Continuous Dynamical Decoupling in Diamond

    Full text link
    To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling method, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.Comment: 5 pages, 4 figure

    Quantum Discord for Investigating Quantum Correlations without Entanglement in Solids

    Full text link
    Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in quantum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.Comment: 4 pages, 4 figure

    Quantum Factorization of 143 on a Dipolar-Coupling NMR system

    Get PDF
    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.Comment: 5 pages, 3 figure

    Simulation of chemical reaction dynamics on an NMR quantum computer

    Full text link
    Quantum simulation can beat current classical computers with minimally a few tens of qubits and will likely become the first practical use of a quantum computer. One promising application of quantum simulation is to attack challenging quantum chemistry problems. Here we report an experimental demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is already able to simulate the dynamics of a prototype chemical reaction. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.Comment: 37 pages, 7 figure
    corecore