170 research outputs found

    Bootstrap Motion Forecasting With Self-Consistent Constraints

    Full text link
    We present a novel framework for motion forecasting with Dual Consistency Constraints and Multi-Pseudo-Target supervision. The motion forecasting task predicts future trajectories of vehicles by incorporating spatial and temporal information from the past. A key design of DCMS is the proposed Dual Consistency Constraints that regularize the predicted trajectories under spatial and temporal perturbation during the training stage. In addition, we design a novel self-ensembling scheme to obtain accurate pseudo targets to model the multi-modality in motion forecasting through supervision with multiple targets explicitly, namely Multi-Pseudo-Target supervision. Our experimental results on the Argoverse motion forecasting benchmark show that DCMS significantly outperforms the state-of-the-art methods, achieving 1st place on the leaderboard. We also demonstrate that our proposed strategies can be incorporated into other motion forecasting approaches as general training schemes

    HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection

    Full text link
    We present Hybrid Voxel Network (HVNet), a novel one-stage unified network for point cloud based 3D object detection for autonomous driving. Recent studies show that 2D voxelization with per voxel PointNet style feature extractor leads to accurate and efficient detector for large 3D scenes. Since the size of the feature map determines the computation and memory cost, the size of the voxel becomes a parameter that is hard to balance. A smaller voxel size gives a better performance, especially for small objects, but a longer inference time. A larger voxel can cover the same area with a smaller feature map, but fails to capture intricate features and accurate location for smaller objects. We present a Hybrid Voxel network that solves this problem by fusing voxel feature encoder (VFE) of different scales at point-wise level and project into multiple pseudo-image feature maps. We further propose an attentive voxel feature encoding that outperforms plain VFE and a feature fusion pyramid network to aggregate multi-scale information at feature map level. Experiments on the KITTI benchmark show that a single HVNet achieves the best mAP among all existing methods with a real time inference speed of 31Hz.Comment: accepted to CVPR 202

    Breath-, air- and surface-borne SARS-CoV-2 in hospitals

    Get PDF
    The COVID-19 pandemic has brought an unprecedented crisis to the global health sector. When discharging COVID-19 patients in accordance with throat or nasal swab protocols using RT-PCR, the potential risk of reintroducing the infection source to humans and the environment must be resolved. Here, 14 patients including 10 COVID-19 subjects were recruited; exhaled breath condensate (EBC), air samples and surface swabs were collected and analyzed for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) in four hospitals with applied natural ventilation and disinfection practices in Wuhan. Here we discovered that 22.2% of COVID-19 patients (n = 9), who were ready for hospital discharge based on current guidelines, had SARS-CoV-2 in their exhaled breath (~10⁵ RNA copies/m³). Although fewer surface swabs (3.1%, n = 318) tested positive, medical equipment such as face shield frequently contacted/used by healthcare workers and the work shift floor were contaminated by SARS-CoV-2 (3–8 viruses/cm²). Three of the air samples (n = 44) including those collected using a robot-assisted sampler were detected positive by a digital PCR with a concentration level of 9–219 viruses/m³. RT-PCR diagnosis using throat swab specimens had a failure rate of more than 22% in safely discharging COVID-19 patients who were otherwise still exhaling the SARS-CoV-2 by a rate of estimated ~1400 RNA copies per minute into the air. Direct surface contact might not represent a major transmission route, and lower positive rate of air sample (6.8%) was likely due to natural ventilation (1.6–3.3 m/s) and regular disinfection practices. While there is a critical need for strengthening hospital discharge standards in preventing re-emergence of COVID-19 spread, use of breath sample as a supplement specimen could further guard the hospital discharge to ensure the safety of the public and minimize the pandemic re-emergence risk

    The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy

    No full text
    The paravascular pathway, also known as the “glymphatic” pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins. Studies have shown that metabolic waste products and solutes, including proteins involved in the pathogenesis of neurodegenerative diseases such as amyloid-beta, may be cleared by this pathway. Consequently, a growing body of research has begun to explore the association between glymphatic dysfunction and various disease states. However, significant controversy exists in the literature regarding both the direction of waste clearance as well as the anatomical space in which the waste-fluid mixture is contained. Some studies have found no evidence of interstitial solute clearance along the paravascular space of veins. Rather, they demonstrate a perivascular pathway in which waste is cleared from the brain along an anatomically distinct perivascular space in a direction opposite to that of paravascular flow. Although possible explanations have been offered, none have been able to fully reconcile the discrepancies in the literature, and many questions remain. Given the therapeutic potential that a comprehensive understanding of brain waste clearance pathways might offer, further research and clarification is highly warranted

    Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: A systematic review

    Get PDF
    Background: Low back pain is a highly prevalent health problem around the world, affecting 50% to 85% of people at some point in life. The purpose of this systematic review is to summarize the previous proton magnetic resonance spectroscopy studies on brain chemical changes in patients with chronic low back pain (CLBP). Methods: We identified relevant studies from a literature search of PubMed and EMBASE from 1980 to March 2016. Data extraction was performed on the subjects' characteristics, MRS methods, spectral analyses, cerebral metabolites and perceptual measurements. Results: The review identified 9 studies that met the inclusion criteria, comprised of data on 135 CLBP subjects and 137 healthy controls. Seven of these studies reported statistically different neurochemical alterations in patients with CLBP. The results showed that compared to controls, CLBP patients showed reductions of 1) N-acetyl-aspartate (NAA) in the dorsolateral prefrontal cortex (DLPFC), right primary motor cortex, left somatosensory cortex (SSC), left anterior insula and anterior cingulate cortex (ACC); 2) glutamate in the ACC; 3) myo-inositol in the ACC and thalamus; 4) choline in the right SSC; and 5) glucose in the DLPFC. Conclusion: This review provides evidence for alterations in the biochemical profile of the brain in patients with CLBP, which suggests that biochemical changes may play a significant role in the development and pathophysiology of CLBP and shed light on the development of new treatments for CLBP

    Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study

    No full text
    Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS
    corecore