409 research outputs found

    Quantum information processing architecture with endohedral fullerenes in a carbon nanotube

    Full text link
    A potential quantum information processor is proposed using a fullerene peapod, i.e., an array of the endohedral fullerenes 15N@C60 or 31P@C60 contained in a single walled carbon nanotube (SWCNT). The qubits are encoded in the nuclear spins of the doped atoms, while the electronic spins are used for initialization and readout, as well as for two-qubit operations.Comment: 8 pages, 8 figure

    One-step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity

    Full text link
    The diamond nitrogen-vacancy (NV) center is an excellent candidate for quantum information processing, whereas entangling separate NV centers is still of great experimental challenge. We propose an one-step conditional phase flip with three NV centers coupled to a whispering-gallery mode cavity by virtue of the Raman transition and smart qubit encoding. As decoherence is much suppressed, our scheme could work for more qubits. The experimental feasibility is justified.Comment: 3 pages, 2 figures, Accepted by Appl. Phys. Let

    Precision measurement of charge number with optomechanically induced transparency

    Full text link
    We propose a potentially practical scheme to precisely measure the charge numbers of small charged objects by optomechanical systems using optomechanically induced transparency (OMIT). In contrast to the conventional measurements based on the noise backaction on the optomechanical systems, our scheme makes use of the small deformation of the mechanical resonator sensitive to the charge number of the nearby charged object, which could achieve the detection of a single charge. The relationship between the charge number and the window width of the OMIT is investigated and the feasibility of the scheme is justified by numerical simulation using currently available experimental values.Comment: 6 pages,4 figure

    Polytopes, quasi-minuscule representations and rational surfaces

    Get PDF
    summary:We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions

    Non-Markovian effect on the quantum discord

    Full text link
    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. It implies that the quantum discord is more useful than the entanglement to describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure
    corecore