99,273 research outputs found

    Study of 0-Ï€\pi phase transition in hybrid superconductor-InSb nanowire quantum dot devices

    Full text link
    Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating novel intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition between Kondo correlations and superconductivity in Josephson quantum dot (QD) devices results in two different ground states and the occurrence of a 0-π\pi quantum phase transition. Here we report on transport measurements on hybrid superconductor-InSb nanowire QD devices with different device geometries. We demonstrate a realization of continuous gate-tunable ABSs with both 0-type levels and π\pi-type levels. This allow us to manipulate the transition between 0 and π\pi junction and explore charge transport and spectrum in the vicinity of the quantum phase transition regime. Furthermore, we find a coexistence of 0-type ABS and π\pi-type ABS in the same charge state. By measuring temperature and magnetic field evolution of the ABSs, the different natures of the two sets of ABSs are verified, being consistent with the scenario of phase transition between the singlet and doublet ground state. Our study provides insights into Andreev transport properties of hybrid superconductor-QD devices and sheds light on the crossover behavior of the subgap spectrum in the vicinity of 0-π\pi transition

    Enhanced critical current density of MgB2 superconductor synthesized in high magnetic fields

    Full text link
    The effect of high magnetic fields on the current carrying properties of both MgB2 bulks and Fe-sheathed tapes was investigated following different thermal sequences. It is found that application of a large magnetic field during processing results in the quite uniform microstructure and the better connectivity between the MgB2 grains. As a result, the Jc of these samples has shown much higher value than that of the MgB2 samples in the absence of magnetic field. The possible mechanism of the Jc enhancement under an external magnetic field is also discussed.Comment: Presented at ISS2005, Tsukuba, 24-26 Oct., 2005; Revised versio

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201

    Formation of X-Ray Cavities by the Magnetically Dominated Jet-Lobe System in a Galaxy Cluster

    Full text link
    We present cosmological magnetohydrodynamic simulations of the formation of a galaxy cluster with magnetic energy feedback from an active galactic nuclei (AGN). We demonstrate that X-ray cavities can be produced by the magnetically dominated jet-lobe system that is supported by a central axial current. The cavities are magnetically dominated and their morphology is determined jointedly by the magnetic fields and the background cluster pressure profile. The expansion and motion of the cavities are driven initially by the Lorentz force of the magnetic fields, and the cavities only become buoyant at late stages (>500> 500 Myr). We find that up to 8080%-90% of the injected magnetic energy goes into doing work against the hot cluster medium, heating it, and lifting it in the cluster potential.Comment: 11 pages, 3 figures, minor correction

    Does financial regulation matter? Market volatility and the US 1933/34 Acts

    Get PDF
    The impact of the US 1933/34 Acts, the rst national nancial regulation acts in the world, on nancial markets have been under debates since Stigler (1964). Major fi ndings in the literature is that nancial regulation enacted by these laws is at best being ine¤ective to improve nancial markets until some recent studies imply indirectly that they could be e¤ective. By studying daily returns of NYSE data from 1890 to1970, this paper provides systematic evidence that the 1933/34 Acts have substantially reduced market volatilities after controlling for Great Depression e¤ect and macroeco-nomic variables. Moreover, we show that even when we treat the existence and the date of the volatility changes as unknown, statistically identi ed structural changes are fully consistent with the above results that the volatility reduction time coincide with the enacting of the Acts.postprin
    • …
    corecore