23 research outputs found

    Imaging the mechanical properties of nanowire arrays

    Get PDF
    Dimensional and contact resonance (CR) images of nanowire (NW) arrays are measured using our new-developed CR imaging (CRI) setup. Then a reference method is employed to calculate the indentation modulus of NWs (Mi,NW) representing the elasticity of NWs, by measuring NW arrays (NWAs) and reference samples at the same static probing force. Furthermore, topography is imaged in combination with CR and Mi,NW separately by software, whereby the relation between both parameters of NWAs is visualized. As typical examples, 3D imaging of topography and Mi,NW is performed with Si pillar, Cu and ZnO NWAs. The novel method allows for fast mechanical performance measurements of large-scale vertically-aligned NW arrays (NWAs) without releasing them from their substrates

    Design of Miniaturized, Self-Out-Readable Cantilever Resonator for Highly Sensitive Airborne Nanoparticle Detection

    Get PDF
    In this paper, a self-out-readable, miniaturized cantilever resonator for highly sensitive airborne nanoparticle (NP) detection is presented. The cantilever, which is operated in the fundamental in-plane resonance mode, is used as a microbalance with femtogram resolution. To achieve a maximum measurement signal of the piezo resistive Wheatstone half-bridge, the geometric parameters of the sensor design were optimized by finite element modelling (FEM). Struts at the sides of the cantilever resonator act as piezo resistors and enable an electrical read-out of the phase information of the cantilever movement whereby they do not contribute to the resonators rest mass. For the optimized design, a resonator mass of 0.93 ng, a resonance frequency of ~440 kHz, and thus a theoretical sensitivity of 4.23 fg/Hz can be achieved. A μ-channel guiding a particle-laden air flow towards the cantilever is integrated into the sensor chip. Electrically charged NPs will be collected by an electrostatic field between the cantilever and a counter-electrode at the edges of the μ-channel. Such μ-channels will also be used to accomplish particle separation for sizeselective NP detection. Throughout, the presented airborne NP sensor is expected to demonstrate significant improvements in the field of handheld, MEMS-based NP monitoring devices

    Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate

    No full text
    Copper films were grown on (3-Mercaptopropyl)trimethoxysilane (MPTMS), (3-Aminopropyl)triethoxysilane (APTES) and 6-(3-(triethoxysilyl)propylamino)-1,3,5- triazine-2,4-dithiol monosodium (TES) self-assembled monolayers (SAMs) modified acrylonitrile-butadiene-styrene (ABS) substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111) preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance

    Dimensional-nanopatterned Piezoresistive Silicon Microcantilever for Environmental Sensing

    No full text
    Microcantilevers are the most simplified Microelectromechanical Systems (MEMS) based devices. Resonant piezoresistive silicon microcantilevers (PMCs) coated with sensitive materials, especially the PMCs patterned with sensing nanostructures of large surface-area which work as analytical systems, offer great opportunity for the development and mass production of extremely sensitive sensors for real time in situ detecting of many chemical and explosive gases, at room temperature. In this chapter, we introduce the figure of merit of PMCs-based gas sensors, regarding to their operation modes, signal transduction methods and on-line tracking techniques. The dimensional nanopatterning of PMCs using different strategies, such as bottom-up methods, top-down methods and the combination of both are furtherly and extensively presented and discussed. Examples of recent gas sensor applications using PMCs which are fabricated with nanopatterning on the basis of these aforementioned techniques are given in detail

    Optimizing a Cantilever Measurement System towards High Speed, Nonreactive Contact-Resonance-Profilometry

    No full text
    An existing phase-locked-loop (PLL) based contact-resonance measurement system is studied and optimized. Improvements to the electronics’ circuit to reduce both nonlinear behavior and noise are realized and experimentally tested. The improvements enable to analyze signals even at highly damped vibrations of the cantilever

    Strategy toward Miniaturized, Self-out-Readable Resonant Cantilever and Integrated Electrostatic Microchannel Separator for Highly Sensitive Airborne Nanoparticle Detection

    Get PDF
    In this paper, a self-out-readable, miniaturized cantilever resonator for highly sensitive airborne nanoparticle (NP) detection is presented. The cantilever, which is operated in the fundamental in-plane resonance mode, is used as a microbalance with femtogram resolution. To maximize sensitivity and read-out signal amplitude of the piezo-resistive Wheatstone half bridge, the geometric parameters of the sensor design are optimized by finite element modelling (FEM). The electrical read-out of the cantilever movement is realized by piezo-resistive struts at the sides of the cantilever resonator that enable real-time tracking using a phase-locked loop (PLL) circuit. Cantilevers with minimum resonator mass of 1.72 ng and resonance frequency of ~440 kHz were fabricated, providing a theoretical sensitivity of 7.8 fg/Hz. In addition, for electrostatic NP collection, the cantilever has a negative-biased electrode located at its free end. Moreover, the counter-electrode surrounding the cantilever and a µ-channel, guiding the particle-laden air flow towards the cantilever, are integrated with the sensor chip. µ-channels and varying sampling voltages will also be used to accomplish particle separation for size-selective NP detection. To sum up, the presented airborne NP sensor is expected to demonstrate significant improvements in the field of handheld, micro-/nanoelectromechanical systems (M/NEMS)-based NP monitoring devices

    Design of Miniaturized, Self-Out-Readable Cantilever Resonator for Highly Sensitive Airborne Nanoparticle Detection

    No full text
    In this paper, a self-out-readable, miniaturized cantilever resonator for highly sensitive airborne nanoparticle (NP) detection is presented. The cantilever, which is operated in the fundamental in-plane resonance mode, is used as a microbalance with femtogram resolution. To achieve a maximum measurement signal of the piezo resistive Wheatstone half-bridge, the geometric parameters of the sensor design were optimized by finite element modelling (FEM). Struts at the sides of the cantilever resonator act as piezo resistors and enable an electrical read-out of the phase information of the cantilever movement whereby they do not contribute to the resonators rest mass. For the optimized design, a resonator mass of 0.93 ng, a resonance frequency of ~440 kHz, and thus a theoretical sensitivity of 4.23 fg/Hz can be achieved. A μ-channel guiding a particle-laden air flow towards the cantilever is integrated into the sensor chip. Electrically charged NPs will be collected by an electrostatic field between the cantilever and a counter-electrode at the edges of the μ-channel. Such μ-channels will also be used to accomplish particle separation for sizeselective NP detection. Throughout, the presented airborne NP sensor is expected to demonstrate significant improvements in the field of handheld, MEMS-based NP monitoring devices

    Mechanism Study of Xanthate Adsorption on Sphalerite/Marmatite Surfaces by ToF-SIMS Analysis and Flotation

    No full text
    In this work, the active sites and species involved in xanthate adsorption on sphalerite/marmatite surfaces were studied using adsorption capacity measurements, single mineral flotation, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis. The effects of Fe concentration on the xanthate adsorption capacity, Cu activation, and the flotation response of sphalerite/marmatite were determined. A discovery was that xanthate can interact with Fe atoms in the crystal of sphalerite/marmatite, as well as with Zn and Cu on the surface. We detected C2S2− fragment ions from dixanthogen, and dixanthogen may have been adsorbed on the surface of marmatite. The amounts of Cu and copper xanthate adsorbed on the marmatite surface were lower than those on the sphalerite surface, because Fe occupies Cu and Zn exchange sites. These results help to address the long-standing controversy regarding the products and mechanisms of xanthate adsorption on Fe-bearing sphalerite surfaces

    Fabrication of ZnO Nanorods on MEMS Piezoresistive Silicon Microcantilevers for Environmental Monitoring

    No full text
    In this study, a ZnO nanorods (NRs) patterned MEMS piezoresistive silicon micro-cantilever was fabricated as environmental monitor. The fabrication starts from bulk silicon, utilizing photolithography, diffusion, inductively coupled plasma (ICP) cryogenic dry etching, Zinc DC-sputtering, and chemical bath deposition (CBD) etc. This sensor shows a humidity sensitivity value of 6.35 ± 0.27 ppm/RH% at 25 °C in the range from 30% RH to 80% RH

    Silicon Microcantilevers with ZnO Nanorods/Chitosan-SAMs Hybrids on Its Back Surface for Humidity Sensing

    No full text
    This paper reports a piezoresistive silicon microcantilever-based gravimetric humidity sensor, where a ZnO nanofilm (200 nm) and ZnO nanorods (NRs) with different lengths (1.5 µm and 6 µm) modified with chitosan self-assembled monolayers (SAMs) are coated on the microcantilevers’ back surface as the sensing material. Thanks to the new sensor design, the resonant frequency (RF) shifts induced by the mass adsorption on the high surface-area-to-volume ratio, hybrid-sensing nanostructure can be tracked directly by monitoring the output of the p-diffused full Wheatstone bridge. By depositing ZnO NRs and Chitosan SAMs, direct-reading microcantilevers with high repeatability, reliability and high sensitivity (15 Hz/%RH) can be achieved
    corecore