112 research outputs found

    FedSEAL: Semi-Supervised Federated Learning with Self-Ensemble Learning and Negative Learning

    Full text link
    Federated learning (FL), a popular decentralized and privacy-preserving machine learning (FL) framework, has received extensive research attention in recent years. The majority of existing works focus on supervised learning (SL) problems where it is assumed that clients carry labeled datasets while the server has no data. However, in realistic scenarios, clients are often unable to label their data due to the lack of expertise and motivation while the server may host a small amount of labeled data. How to reasonably utilize the server labeled data and the clients' unlabeled data is thus of paramount practical importance. In this paper, we propose a new FL algorithm, called FedSEAL, to solve this Semi-Supervised Federated Learning (SSFL) problem. Our algorithm utilizes self-ensemble learning and complementary negative learning to enhance both the accuracy and the efficiency of clients' unsupervised learning on unlabeled data, and orchestrates the model training on both the server side and the clients' side. Our experimental results on Fashion-MNIST and CIFAR10 datasets in the SSFL setting validate the effectiveness of our method, which outperforms the state-of-the-art SSFL methods by a large margin.Comment: 15 pages, 7 figure

    On the Local Cache Update Rules in Streaming Federated Learning

    Full text link
    In this study, we address the emerging field of Streaming Federated Learning (SFL) and propose local cache update rules to manage dynamic data distributions and limited cache capacity. Traditional federated learning relies on fixed data sets, whereas in SFL, data is streamed, and its distribution changes over time, leading to discrepancies between the local training dataset and long-term distribution. To mitigate this problem, we propose three local cache update rules - First-In-First-Out (FIFO), Static Ratio Selective Replacement (SRSR), and Dynamic Ratio Selective Replacement (DRSR) - that update the local cache of each client while considering the limited cache capacity. Furthermore, we derive a convergence bound for our proposed SFL algorithm as a function of the distribution discrepancy between the long-term data distribution and the client's local training dataset. We then evaluate our proposed algorithm on two datasets: a network traffic classification dataset and an image classification dataset. Our experimental results demonstrate that our proposed local cache update rules significantly reduce the distribution discrepancy and outperform the baseline methods. Our study advances the field of SFL and provides practical cache management solutions in federated learning

    Federated Learning via Indirect Server-Client Communications

    Full text link
    Federated Learning (FL) is a communication-efficient and privacy-preserving distributed machine learning framework that has gained a significant amount of research attention recently. Despite the different forms of FL algorithms (e.g., synchronous FL, asynchronous FL) and the underlying optimization methods, nearly all existing works implicitly assumed the existence of a communication infrastructure that facilitates the direct communication between the server and the clients for the model data exchange. This assumption, however, does not hold in many real-world applications that can benefit from distributed learning but lack a proper communication infrastructure (e.g., smart sensing in remote areas). In this paper, we propose a novel FL framework, named FedEx (short for FL via Model Express Delivery), that utilizes mobile transporters (e.g., Unmanned Aerial Vehicles) to establish indirect communication channels between the server and the clients. Two algorithms, called FedEx-Sync and FedEx-Async, are developed depending on whether the transporters adopt a synchronized or an asynchronized schedule. Even though the indirect communications introduce heterogeneous delays to clients for both the global model dissemination and the local model collection, we prove the convergence of both versions of FedEx. The convergence analysis subsequently sheds lights on how to assign clients to different transporters and design the routes among the clients. The performance of FedEx is evaluated through experiments in a simulated network on two public datasets.Comment: 6 page

    RGBT Salient Object Detection: A Large-scale Dataset and Benchmark

    Full text link
    Salient object detection in complex scenes and environments is a challenging research topic. Most works focus on RGB-based salient object detection, which limits its performance of real-life applications when confronted with adverse conditions such as dark environments and complex backgrounds. Taking advantage of RGB and thermal infrared images becomes a new research direction for detecting salient object in complex scenes recently, as thermal infrared spectrum imaging provides the complementary information and has been applied to many computer vision tasks. However, current research for RGBT salient object detection is limited by the lack of a large-scale dataset and comprehensive benchmark. This work contributes such a RGBT image dataset named VT5000, including 5000 spatially aligned RGBT image pairs with ground truth annotations. VT5000 has 11 challenges collected in different scenes and environments for exploring the robustness of algorithms. With this dataset, we propose a powerful baseline approach, which extracts multi-level features within each modality and aggregates these features of all modalities with the attention mechanism, for accurate RGBT salient object detection. Extensive experiments show that the proposed baseline approach outperforms the state-of-the-art methods on VT5000 dataset and other two public datasets. In addition, we carry out a comprehensive analysis of different algorithms of RGBT salient object detection on VT5000 dataset, and then make several valuable conclusions and provide some potential research directions for RGBT salient object detection.Comment: 12 pages, 10 figures https://github.com/lz118/RGBT-Salient-Object-Detectio

    Decomposition of carbon emission driving factors and judgment of peak status in countries along the Belt and Road

    Get PDF
    Most of the countries along the Belt and Road are still developing, with their carbon emissions yet to peak. There is a lack of comprehensive analysis and research to judge these countries' current carbon peak state and quantify key driving factors contributing to their carbon emissions. This study aims to fill this gap.A new method for judging a country's peak carbon status based on a time series of carbon emissions is developed. We divide the status of all countries along the Belt and Road into four categories: reached the peak, peak plateau period 1 (the downward trend is not significant), peak plateau period 2 (obvious recession), and not reached the peak. LMDI factorization is used to decompose the change in carbon emissions of energy consumption into multiple factors: carbon intensity, energy intensity, economic output, and population size, based on Kaya's identity theory. The carbon emission and socioeconomic databases from 2000 to 2019 are utilized for this analysis. The main positive driving factor of the three countries (Hungary, Romania, Czech Republic) that have reached the peak is GDP PPP per population, while other driving factors make negative contributions to carbon emissions. In some years, these countries briefly experienced a negative contribution of GDP PPP per population to carbon emissions. The driving factors of carbon emissions for countries in the peak plateau period are not stable, with contributions of GDP PPP per population, energy intensity, and carbon intensity fluctuating periodically. In countries that have not reached the peak of carbon emissions, population growth and economic growth are significant positive contributors, while the effect of driving factors that negatively contribute to carbon emissions is less obvious.The study's findings provide valuable insights into the carbon emission peak status and driving factors of countries along the Belt and Road, which can be used to guide policymaking and future research in addressing climate change and promoting sustainable development in these regions

    Nonisolated switching-capacitor-integrated three- port converters with seamless PWM/PFM modulation

    Get PDF
    Efficiency and power density of power converters for interfacing photovoltaic panels, energy storage components such as batteries, and loads in photovoltaic (PV) systems become more and more important. Compared with individual converter design for different terminals, power-integrated multiport converters shows obvious advantages in simplifying the system structure, reducing the component count, and improving the operation reliability. Originated from the high power-density switched capacitor topology, a nonisolated switching-capacitor-integrated three-port converter (SCI-TPC) is presented to achieve single-stage direct power conversion among three ports. In order to minimize the cross-regulation effect, pulse-width-modulation (PWM) and pulse-frequency-modulation (PFM) are adopted to realize the flexible power regulation and achieve power balance among three ports. Main operation modes, power flow distribution, and power transfer characteristic are analyzed. With the seamless PWM and PFM hybrid modulation, the current stress can be reduced and the overall conversion efficiency over a full operating range can be improved. Main experimental results are provided to validate the effectiveness of the proposed concept

    The <i>Sinocyclocheilus</i> cavefish genome provides insights into cave adaptation

    Get PDF
    BACKGROUND: An emerging cavefish model, the cyprinid genus Sinocyclocheilus, is endemic to the massive southwestern karst area adjacent to the Qinghai-Tibetan Plateau of China. In order to understand whether orogeny influenced the evolution of these species, and how genomes change under isolation, especially in subterranean habitats, we performed whole-genome sequencing and comparative analyses of three species in this genus, S. grahami, S. rhinocerous and S. anshuiensis. These species are surface-dwelling, semi-cave-dwelling and cave-restricted, respectively. RESULTS: The assembled genome sizes of S. grahami, S. rhinocerous and S. anshuiensis are 1.75 Gb, 1.73 Gb and 1.68 Gb, respectively. Divergence time and population history analyses of these species reveal that their speciation and population dynamics are correlated with the different stages of uplifting of the Qinghai-Tibetan Plateau. We carried out comparative analyses of these genomes and found that many genetic changes, such as gene loss (e.g. opsin genes), pseudogenes (e.g. crystallin genes), mutations (e.g. melanogenesis-related genes), deletions (e.g. scale-related genes) and down-regulation (e.g. circadian rhythm pathway genes), are possibly associated with the regressive features (such as eye degeneration, albinism, rudimentary scales and lack of circadian rhythms), and that some gene expansion (e.g. taste-related transcription factor gene) may point to the constructive features (such as enhanced taste buds) which evolved in these cave fishes. CONCLUSION: As the first report on cavefish genomes among distinct species in Sinocyclocheilus, our work provides not only insights into genetic mechanisms of cave adaptation, but also represents a fundamental resource for a better understanding of cavefish biology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0223-4) contains supplementary material, which is available to authorized users
    corecore