1,378 research outputs found

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201

    Multi-criteria Anomaly Detection using Pareto Depth Analysis

    Full text link
    We consider the problem of identifying patterns in a data set that exhibit anomalous behavior, often referred to as anomaly detection. In most anomaly detection algorithms, the dissimilarity between data samples is calculated by a single criterion, such as Euclidean distance. However, in many cases there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such a case, multiple criteria can be defined, and one can test for anomalies by scalarizing the multiple criteria using a linear combination of them. If the importance of the different criteria are not known in advance, the algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we introduce a novel non-parametric multi-criteria anomaly detection method using Pareto depth analysis (PDA). PDA uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach scales linearly in the number of criteria and is provably better than linear combinations of the criteria.Comment: Removed an unnecessary line from Algorithm

    Fusible numbers and Peano Arithmetic

    Full text link
    Inspired by a mathematical riddle involving fuses, we define the "fusible numbers" as follows: 00 is fusible, and whenever x,yx,y are fusible with ∣y−x∣<1|y-x|<1, the number (x+y+1)/2(x+y+1)/2 is also fusible. We prove that the set of fusible numbers, ordered by the usual order on R\mathbb R, is well-ordered, with order type ε0\varepsilon_0. Furthermore, we prove that the density of the fusible numbers along the real line grows at an incredibly fast rate: Letting g(n)g(n) be the largest gap between consecutive fusible numbers in the interval [n,∞)[n,\infty), we have g(n)−1≥Fε0(n−c)g(n)^{-1} \ge F_{\varepsilon_0}(n-c) for some constant cc, where FαF_\alpha denotes the fast-growing hierarchy. Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements: PA cannot prove the true statement "For every natural number nn there exists a smallest fusible number larger than nn." Also, consider the algorithm "M(x)M(x): if x<0x<0 return −x-x, else return M(x−M(x−1))/2M(x-M(x-1))/2." Then MM terminates on real inputs, although PA cannot prove the statement "MM terminates on all natural inputs."Comment: Minor improvements. 26 pages, 5 figures, 3 table

    Certifying solution geometry in random CSPs: counts, clusters and balance

    Get PDF
    An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: what does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1. Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random dd-regular graph. 2. Clusters. For Boolean 33CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3. Balance. We also give algorithms that with high probability certify that there are no "unbalanced" solutions, i.e., solutions where the fraction of +1+1s deviates significantly from 50%50\%. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal

    Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging

    Get PDF
    We develop a novel dual-modal contrast agent—encapsulated-ink poly(lactic-co-glycolic acid) (PLGA) microbubbles and nanobubbles—for photoacoustic and ultrasound imaging. Soft gelatin phantoms with embedded tumor simulators of encapsulated-ink PLGA microbubbles and nanobubbles in various concentrations are clearly shown in both photoacoustic and ultrasound images. In addition, using photoacoustic imaging, we successfully image the samples positioned below 1.8-cm-thick chicken breast tissues. Potentially, simultaneous photoacoustic and ultrasound imaging enhanced by encapsulated-dye PLGA microbubbles or nanobubbles can be a valuable tool for intraoperative assessment of tumor boundaries and therapeutic margins

    Toward Fine Contact Interactions: Learning to Control Normal Contact Force with Limited Information

    Full text link
    Dexterous manipulation of objects through fine control of physical contacts is essential for many important tasks of daily living. A fundamental ability underlying fine contact control is compliant control, \textit{i.e.}, controlling the contact forces while moving. For robots, the most widely explored approaches heavily depend on models of manipulated objects and expensive sensors to gather contact location and force information needed for real-time control. The models are difficult to obtain, and the sensors are costly, hindering personal robots' adoption in our homes and businesses. This study performs model-free reinforcement learning of a normal contact force controller on a robotic manipulation system built with a low-cost, information-poor tactile sensor. Despite the limited sensing capability, our force controller can be combined with a motion controller to enable fine contact interactions during object manipulation. Promising results are demonstrated in non-prehensile, dexterous manipulation experiments
    • …
    corecore