93 research outputs found

    Collective flow in 2.76 A TeV and 5.02 A TeV Pb+Pb collisions

    Get PDF
    In this paper, we study and predict flow observables in 2.76 A TeV and 5.02 A TeV Pb +Pb collisions, using the iEBE-VISHNU hybrid model with TRENto and AMPT initial conditions and with different forms of the QGP transport coefficients. With properly chosen and tuned parameter sets, our model calculations can nicely describe various flow observables in 2.76 A TeV Pb +Pb collisions, as well as the measured flow harmonics of all charged hadrons in 5.02 A TeV Pb +Pb collisions. We also predict other flow observables, including vn(pT)v_n(p_T) of identified particles, event-by-event vnv_n distributions, event-plane correlations, (Normalized) Symmetric Cumulants, non-linear response coefficients and pTp_T-dependent factorization ratios, in 5.02 A TeV Pb+Pb collisions. We find many of these observables remain approximately the same values as the ones in 2.76 A TeV Pb+Pb collisions. Our theoretical studies and predictions could shed light to the experimental investigations in the near future.Comment: 17 pages, 11 figure

    Correlations of flow harmonics in 2.76A TeV Pb--Pb collisions

    Full text link
    Using the event-by-event viscous hydrodynamics VISH2+1 with MC-Glauber, MC-KLN, and AMPT initial conditions, we investigate the correlations of flow harmonics, including the symmetric cumulants SCv(m,n)SC^{v}(m, n), the normalized symmetric cumulants NSC(m,n)NSC(m, n), and the Pearson correlation coefficients C(vm2,vn2)C(v_{m}^{2}, v_{n}^{2}) in 2.76A TeV Pb--Pb collisions. We find SCv(m,n)SC^{v}(m, n) is sensitive to both initial conditions and the specific shear viscosity η/s\eta/s. A comparison with the recent ALICE data show that our hydrodynamic calculations can qualitatively describe the data of SCv(3,2)SC^{v}(3, 2) and SCv(4,2)SC^{v}(4, 2) for various initial conditions, which demonstrate that v2v_2, v4v_4 are correlated and v2v_2, v3v_3 are anti-correlated. Meanwhile, the predicted symmetric cumulants SCv(5,2)SC^{v}(5, 2), SCv(5,3)SC^{v}(5, 3), and SCv(4,3)SC^{v}(4, 3) reveal that v2v_2 and v5v_5, v3v_3 and v5v_5 are correlated, v3v_3 and v4v_4 are anti-correlated in most centrality classes. We also find NSCv(3,2)NSC^{v}(3, 2) and C(v32,v22)C(v_{3}^{2}, v_{2}^{2}), which are insensitive to η/s\eta/s, are mainly determined by corresponding NSCε(3,2)NSC^{\varepsilon}(3, 2) and C(ε32,ε22)C(\varepsilon_{3}^{2}, \varepsilon_{2}^{2}) correlators from the initial state. In contrast, other NSCv(m,n)NSC^{v}(m, n) and C(vm2,vn2)C(v_{m}^{2}, v_{n}^{2}) correlators are influenced by both initial conditions and η/s\eta/s, which illustrates the non-linear mode couplings in higher flow harmonics with n≥4n \geq 4.Comment: 10 pages, 7 figure

    Investigating the correlations of flow harmonics in 2.76A TeV Pb--Pb collisions

    Get PDF
    This proceeding briefly summarizes our recent investigations on the correlations of flow harmonics in 2.76A TeV Pb--Pb collisions with viscous hydrodynamics {\tt VISH2+1}. We calculated both the symmetric cumulants SCv(m,n)SC^{v}(m, n) and the normalized symmetric cumulants NSCv(m,n)NSC^{v}(m, n), and found v2v_{2} and v4v_{4}, v2v_{2} and v5v_{5}, v3v_{3} and v5v_{5} are correlated, v2v_{2} and v3v_{3}, v3v_{3} and v4v_{4} are anti-correlated. We also found NSCv(3,2)NSC^{v}(3, 2) are insensitive to the QGP viscosity, which are mainly determined by the initial conditions.Comment: SQM2016 proceeding, 4pages, 2 figure

    Experimental test of contextuality in quantum and classical systems

    Full text link
    Contextuality is considered as an intrinsic signature of non-classicality, and a crucial resource for achieving unique advantages of quantum information processing. However, recently there have been debates on whether classical fields may also demonstrate contextuality. Here we experimentally configure a contextuality test for optical fields, adopting various definitions of measurement events, and analyse how the definitions affect the emergence of non-classical correlations. The heralded single photon state, a typical non-classical light field, manifests contextuality in our setup, while contextuality for classical coherent fields strongly depends on the specific definition of measurement events which is equivalent to filtering the non-classical component of the input state. Our results highlight the importance of definition of measurement events to demonstrate contextuality, and link the contextual correlations to non-classicality defined by quasi-probabilities in phase space.Comment: 17 pages, 7 figure

    Hydrodynamic Collectivity in Proton--Proton Collisions at 13 TeV

    Get PDF
    In this paper, we investigate the hydrodynamic collectivity in proton--proton (pp) collisions at 13 TeV, using iEBE-VISHNU hybrid model with HIJING initial conditions. With properly tuned parameters, our model simulations can remarkably describe all the measured 2-particle correlations, including integrated and differential elliptic flow coefficients for all charged and identified hadrons (KS0K_S^0, Λ\Lambda). However, our model calculations show positive 4-particle cumulant c2{4}c_{2}\{4\} in high multiplicity pp collisions, and can not reproduce the negative c2{4}c_{2}\{4\} measured in experiment. Further investigations on the HIJING initial conditions show that the fluctuations of the second order anisotropy coefficient ε2\varepsilon_{2} increases with the increase of its mean value, which leads to a similar trend of the flow fluctuations. For a simultaneous description of the 2- and 4- particle cumulants within the hydrodynamic framework, it is required to have significant improvements on initial condition for pp collisions, which is still lacking of knowledge at the moment.Comment: 7 pages, 6 figures, published versio

    Experimental quantification of coherence of a tunable quantum detector

    Full text link
    Quantum coherence is a fundamental resource that quantum technologies exploit to achieve performance beyond that of classical devices. A necessary prerequisite to achieve this advantage is the ability of measurement devices to detect coherence from the measurement statistics. Based on a recently developed resource theory of quantum operations, here we quantify experimentally the ability of a typical quantum-optical detector, the weak-field homodyne detector, to detect coherence. We derive an improved algorithm for quantum detector tomography and apply it to reconstruct the positive-operator-valued measures (POVMs) of the detector in different configurations. The reconstructed POVMs are then employed to evaluate how well the detector can detect coherence using two computable measures. As the first experimental investigation of quantum measurements from a resource theoretical perspective, our work sheds new light on the rigorous evaluation of the performance of a quantum measurement apparatus
    • …
    corecore