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In this paper, we investigate the hydrodynamic collectivity in proton–proton (p–p) collisions at 13 TeV, 
using iEBE-VISHNU hybrid model with HIJING initial conditions. With properly tuned parameters, our 
model simulations can remarkably describe all the measured 2-particle correlations, including integrated 
and differential elliptic flow coefficients for all charged and identified hadrons (K 0

S , �). However, our 
model calculations show positive 4-particle cumulant c2{4} in high multiplicity pp collisions, and can 
not reproduce the negative c2{4} measured in experiment. Further investigations on the HIJING initial 
conditions show that the fluctuations of the second order anisotropy coefficient ε2 increases with the 
increase of its mean value, which leads to a similar trend of the flow fluctuations. For a simultaneous 
description of the 2- and 4- particle cumulants within the hydrodynamic framework, it is required to 
have significant improvements on initial condition for pp collisions, which is still lacking of knowledge 
at the moment.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the main goal of the heavy-ion program at Relativistic 
Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) is 
to create a novel state of matter, the Quark-Gluon Plasma (QGP), 
and study its properties. The anisotropic flow, that evaluates the 
anisotropy of the momentum distribution of final produced par-
ticles, is sensitive to both initial state fluctuations and the QGP 
transport properties [1–7]. Fruitful flow data [8–23] and the suc-
cessfully descriptions by hydrodynamic calculations [24–31], re-
vealed that the created QGP fireball behaves like a nearly perfect 
liquid with a very small specific shear viscosity η/s close to the 
conjectured lowest bound 1/4π [32].

The high energy proton–lead (p–Pb) and proton–proton (p–p) 
collisions at the LHC were originally aimed to provide the refer-
ence data for the high energy nucleus-nucleus collisions. However, 
various unexpected phenomena have been observed in these small 
systems, especially in the high multiplicity region. One surpris-
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ing discovery is the long-range “ridge” structures in two-particle 
azimuthal correlations with a large pseudo-rapidity separation in 
high multiplicity p–Pb and p–p collisions [33–37]. Such long-range 
correlation structures were firstly discovered in Au–Au and Pb–
Pb collisions and interpreted as a signature of the collective ex-
pansion. In general, the theoretical interpolations for the long-
range “ridge” structure in the small systems can be classified into 
three big categories: final state interactions, such as hydrodynamic 
expansion [38–43], parton cascade [44–47], hadronic rescatter-
ing [48], rope and shoving mechanism [49], initial state effects 
related to the gluon saturation [50–57] and combinations of both 
initial and final state effects [58]. For recent theoretical progresses, 
please refer to [7,59].

In experiments, one of the crucial questions on the “ridge” 
structure is whether it arises from correlations of all particles re-
lated to the collective flow or it only involves with the correlations 
from few particles, e.g. from resonance decays or jets, which is 
defined as non-flow. In small pp and p–Pb systems, the non-flow 
contributions are always significant, even in case that collective ex-
pansion has been developed. It is thus necessary to remove such 
non-flow effects before comparing the data with the model cal-
culations. Based on different assumptions, various non-flow sub-
traction methods, e.g. template fit [36,60,61] and peripheral sub-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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traction [37] have been applied to the measurements of 2-particle 
correlations in pp collisions at 13 TeV, which yield different non-
flow subtracted results. Currently, it is still unclear which one is a 
better approach to remove the non-flow effects.

Compared with the 2-particle correlations, multi-particle cu-
mulants are less influenced by the non-flow effects, which are 
expected as one of the key observables to evaluate the anisotropic 
collectivity of the small systems. Besides, the multi-particle and 
2-particle cumulants show different sensitivities to event-by-event 
flow fluctuations [1,62,63]. An extensive measurement of these dif-
ferent cumulants could provide tight constraints on the initial state 
fluctuations.

In order to extract real values of the flow coefficients, the 2-, 
4-, 6- and 8-particle cumulants are expected to carry positive, 
negative, positive and negative signs, respectively. Such “changing 
sign pattern” has been observed in the measured 2- and multi-
particle cumulants in Pb–Pb collisions at the LHC, where the cre-
ated QGP fireballs undergo fast collective expansion [8,10]. Based 
on the similar idea, it is proposed to measure the 2- and multi-
particle cumulants to evaluate the collectivity in high multiplicity 
pp collisions at 13 TeV. However, it was found that the standard 
multi-particle cumulants in the small systems are still largely af-
fected by the residual non-flow and its fluctuations, which even 
presents fake flow signals with the “right sign”. Recently, Ref. [64,
65] developed 2- and 3-subevent methods for the multi-particle 
cumulants, which further remove the residual non-flow from jet. 
The related measurements from ATLAS have confirmed the ob-
servations of positive 2-particle cumulants and negative 4-particle 
cumulants in high multiplicity pp collisions at 13 TeV [66]. It is 
thus the proper time to study and evaluate these possible collec-
tive flow signal, using the hydrodynamic calculations. In this paper, 
we will implement iEBE-VISHNU hybrid model with HIJING
initial conditions to study 2- and 4-particle correlations in pp col-
lisions at 

√
sNN = 13 TeV, together with a detailed examinations of 

the initial state fluctuations from HIJING.

2. The model and set-ups

iEBE-VISHNU [67] is an event-by-event simulation version 
of the early developed hybrid model VISHNU [68] that combines 
(2 + 1) − d viscous hydrodynamics VISH2+1 [69,70] to describe 
the QGP expansion with a hadron cascades model UrQMD [71,72]
to simulate the evolution of hadronic matter. In the viscous hy-
drodynamics part, VISH2+1 solves the transport equations for the 
energy-momentum tensor T μν and shear stress tensor πμν with a 
state-of-art equation of state (EoS) s95-PCE [29,73] as an input. For 
simplicity, we neglect the bulk viscosity, net baryon density and 
heat conductivity and assume that specific shear viscosity η/s is 
a constant. The hydrodynamic evolution matches the hadron cas-
cade simulations at a switching temperature Tsw, where various 
hadrons are emitted from the switching hyper-surface for the suc-
ceeding UrQMD evolution.

In our calculations, we use the modified HIJING model [74]
to generate fluctuating initial profiles for the succeeding iEBE-
VISHNU simulations in high energy pp collisions. In HIJING
[75–77], the produced jet pairs and excited nucleus are treated 
as independent strings, where the hard jet productions are cal-
culated by pQCD, and the soft interactions are treated as gluon 
exchange within Lund string model. Here, we assume these strings 
break into partons independently and quickly form several hot 
spots for the succeeding hydrodynamic evolution. Following [78], 
the center positions of the strings (xc, yc) are sampled by the 
Saxon-Woods distribution and the positions of the produced par-
tons within a string are sampled with a Gaussian distribution 
Table 1
Four sets parameters used in iEBE-VISHNU simulations with
HIJING initial conditions for pp collisions at 13 TeV.

σR σ0 τ0 η/s K Tsw (MeV)

Para-I 1.0 0.4 0.1 0.07 1.26 147
Para-II 0.8 0.4 0.2 0.08 1.25 148
Para-III 0.4 0.2 0.6 0.20 1.13 148
Para-IV 0.6 0.4 0.4 0.05 1.28 147

exp (− (x−xc )
2+(y−yc)

2

2σ 2
R

), where σR is the Gaussian smearing factor 
of the string.

Following [79], the initial energy density profiles in the trans-
verse plane are constructed from the energy decompositions of 
emitted partons of HIJING together with an additional Gaussian 
smearing[79]

ε(x, y) = K
∑

i

pi U0

2πσ 2
0 τ0
ηs

exp (− (x − xi)
2 + (y − yi)

2

2σ 2
0

), (1)

where σ0 is the Gaussian smearing factor, pi is the momentum of 
the produced parton i and K is an additional normalization factor, 
U0 is the initial flow velocity of the corresponding fluid cell. Here, 
we assume zero transverse initial flow and only consider the par-
tons within the spacial mid-rapidity |ηs| < 1 (for related details, 
please refer to [79]).

In iEBE-VISHNU simulations with HIJING initial conditions, 
the hydrodynamic starting time τ0, switching temperature Tsw, 
specific shear viscosity η/s, the Gaussian smearing width σR and 
σ0, and normalization factor K are free parameters, which need 
to be fixed by experimental data. In general, one uses total mul-
tiplicity, pT spectra of identified hadrons and integrated flow har-
monics of all charged hadrons to tune the related parameters in 
the hydrodynamic calculations [31,79,80]. However, not all these 
needed data are available in pp collisions at 13 TeV. For exam-
ple, the pT spectra has not been measured and released. Here, 
we assume that slope of pT spectra do not significantly change 
from 7 TeV to 13 TeV, and use these slopes of pions and pro-
tons at 7 TeV [81], the total multiplicity [37] and v2{2} [37,61]
at 13 TeV to partially constrain the parameters in HIJING and
iEBE-VISHNU. In fact, these available data are not enough to 
fully fix all these parameters in our model calculations, especially 
considering that the measured v2{2} from CMS [37] and ATLAS 
[60,61] differ by 20%. We thus select four possible parameter sets 
as listed in Table 1, that roughly fit slope of pT spectra at 7 TeV 
and fit the measured v2{2} from either ATLAS or CMS collabora-
tions, for the following calculations and investigations in Sec. 3. 
The predicted pT spectra of pions, kaons and protons in 0–0.1% 
pp collisions at 13 TeV are shown in Fig. 1, where the centralities 
are cut by the multiplicity of all charged hadrons at mid-rapidity 
|η| < 2.4.1 The spectra at 13 TeV have similar slopes as the ones 
at 7 TeV, which can be measured in experiments in the near fu-
ture.

3. Results and discussion

The 2- and multi-particle correlations are common measure-
ments to study anisotropic azimuthal correlations, which can be 
calculated with the Q-cumulant method [82] and the Generic 
Framework [48]. In our calculations, these two methods are iden-
tical, since it does not involve any inefficiency in azimuthal accep-

1 In our iEBE-VISHNU simulations, the particle event generator between 2 +
1 − d hydrodynamics and UrQMD samples particles within the momentum rapidity 
range |y| < 3.0. After the UrQMD evolution, the boost-invariance are approximately 
kept within |y| < 2.4.
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Fig. 1. (Color online) The pT-spectra of pions, kaons and protons in 0–0.1% pp col-
lisions at 13 TeV, calculated by iEBE-VISHNU hybrid model with HIJING initial 
conditions.

Fig. 2. (Color online) v2{2}, v3{2} and v4{2} in pp collisions at 13 TeV, calculated by
iEBE-VISHNU with HIJING initial conditions. The CMS and ATLAS data are taken 
from [37] and [61], respectively.

tance or tracking efficiency as happened in experiments. We thus 
follow the same procedure as in our early study [48] to calculate 
the 2- and multi-particle correlations as well as the related flow 
harmonics.

3.1. 2-particle cumulant

With the four sets of parameters listed in Table 1, we calculate 
the integrated flow harmonics v2, v3 and v4 in pp collisions at 
13 TeV, using iEBE-VISHNU model with HIJING initial condi-
tions. The 2-particle correlation method with a pseudorapidity gap 
|
η| > 0, kinematic cuts 0.3 < pT < 3.0 GeV/c and |η| < 2.4 is ap-
plied in our calculations.2 The results and the comparisons to the 
experimental data are shown in Fig. 2. The colorful lines are the re-
sults obtained with four sets of parameters (I, II, III, IV). The solid 
circles and triangles represent the CMS measurements of v2{2} and 

2 Following [61], we firstly cut the multiplicity class with the number of all 
charged hadrons N Sel

ch within 0.3 < pT < 3.0 GeV and |η| < 2.4, and then calculate 
the 2-particle cumulant c2{2} (as well as the following 4- particle cumulant c2{4}) 
with the standard method for each unit N Sel

ch bin, which eliminate the multiplicity 
fluctuations. For each N Sel

ch , we then map it to the average number of reconstructed 
charged hadrons Nch with pT > 0.4 GeV and |η| < 2.4 to compare with the experi-
mental data.
v3{2} with “peripheral subtraction” method [37], the solid crosses 
and stars are the ATLAS v2{2} measurements with “template fit” 
and “peripheral subtraction” methods [60]. As shown in Fig. 2, our 
model calculations reproduce the multiplicity dependence of the 
integrated v2{2} from low multiplicity (∼ 30) to high multiplicity 
(∼ 160). More specifically, our calculations with parameter sets I, 
II and III fit the CMS and ATLAS measurements with the “periph-
eral subtraction” method, and the one with para-IV describes the 
ATLAS data from the “template fit” method. For low multiplicity 
Nch ∼ 30, the iEBE-VISHNU calculations fail to describe the CMS 
or ATLAS measurements with the “peripheral subtraction” method, 
which do not significantly decrease as the data. Fig. 2 also com-
pares v3{2} from iEBE-VISHNU and from CMS measured with 
the “peripheral subtraction” method [37]. Our calculations with III 
roughly reproduce the CMS data, while the results from para-I, 
para-II and IV obviously over-estimate the data. It thus shows that 
the v3{2} measurements could further constrain the initial condi-
tions. We also predict v4{2} as a function of multiplicity. Currently, 
the related experimental data is not publicly available, but can be 
compared with our model calculations in the near future [83].

In Fig. 3, we calculate the pT-differential v2(pT) of all charged 
and identified hadrons, using iEBE-VISHNU simulations and with 
the 2-particle cumulant method with a pseudorapidity gap |
η| >
0. Panel (a) shows a comparison between model and data for all 
charged hadrons, where the data from CMS and ATLAS are mea-
sured by the “peripheral subtraction” method [37] and “template 
fit method” [60], respectively. For para-I, para-II and III, our calcu-
lations roughly describe the CMS and ATLAS measurements within 
pT < 2.0 GeV/c. In contrast, the calculations with para-IV slightly 
over predict the data above 1.0 GeV/c.

Fig. 3 (b) and (c) show the v2(pT) for K 0
S and � and for π , 

K and p for the multiplicity range 80 < Nsel
ch < 120. Clear mass 

orderings between K 0
S and � and among π , K and p are seen 

in our iEBE-VISHNU calculations. In the hydrodynamic language, 
the radial flow blue-shifts the lower-pT to higher pT with the 
mass-dependent effects, which leads to the observed mass order-
ing among various hadron species. Panel (b) also shows that the 
v2 mass splitting between K 0

S and � is more significant for the 
calculations with para-III, which indicates a stronger radial flow. 
This consists with the results of pT-spectra in Fig. 1, which shows 
that pT-spectra from para-III are flatter than other ones due to the 
larger radial flow.

3.2. 4-particle cumulant

In experiments, the observed negative c2{4}, together with the 
positive c2{6} and negative c2{8}, is interpreted as a signature 
of collective expansion in the small systems. However, although
iEBE-VISHNU with HIJING initial conditions can describe the 
measured 2-particle correlations for both charged and identified 
hadrons, it fails to reproduce the negative c2{4} as measured by 
CMS and ATLAS with the standard cumulant method [37] and 
three-subevent method [61] (0.3 < pT < 3.0 GeV). Fig. 4 shows 
that, for four parameter sets of HIJING initial conditions, iEBE-
VISHNU always predicts positive values of c2{4} in the high mul-
tiplicity regime. We have also checked that these positive values 
are not caused by the specific cumulant method, possible non-flow 
contributions or multiplicity fluctuations in our model calculations 
(please also refer to the Appendix for details).

In pure hydrodynamics, c2{4} = −v4
2{4} = 〈

v4
2

〉 − 2 
〈
v2

2

〉2
, which 

is influenced by both flow fluctuation and the mean value, and 
can be evaluated by the related v2 distribution P (v2). Due to 
the approximate linear relationship between v2 and ε2, P (v2)

almost follows P (ε2) of the initial condition model [28,84,85]. 
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Fig. 3. (Color online) v2(pT) for all charged hadrons (a), for K 0
S and � (b), and for pions, kaons and protons (c) in high multiplicity pp collisions at 13 TeV, calculated by

iEBE-VISHNU with HIJING initial condition. The CMS and ATLAS data are taken from [37] and [60], respectively.
Fig. 4. (Color online) c2{4} as a function of Nch for all charged hadrons in pp col-
lisions 13 TeV, calculated by iEBE-VISHNU with HIJING initial condition using 
standard cumulant method. The CMS data with standard cumulant method and the 
ATLAS data with three-subevent method are taken from [37] and [61], respectively.

We thus further check P (ε2) distributions of HIJING in Fig. 5, 
which shows that the fluctuations σε2 increases with the mean 
values 〈ε2〉. In other words, the narrower P (ε2) distribution with 
smaller σε2 has a smaller mean value 〈ε2〉, and vice versa. In 
Fig. 5, we also write the values of c2{4}ε for the four curves. 
Three of them (para-I, II, IV) are positive. Correspondingly, the 
calculated c2{4} of final emitted hadrons also present positive val-
ues as shown in Fig. 4. For para-III, c2{4}ε has a small negative 
value. However, the pp fireballs in our hydrodynamic simulations 
do not evolve enough long time to translate that negative c2{4}ε
into an definite negative c2{4} as measured in experiment. For 
a simultaneous description of the 2- and 4- particle cumulants 
within the framework of hydrodynamics, other initial condition 
models for pp collisions should be further developed and inves-
tigated.

4. Summary

In this paper, we studied the 2- and 4-particle cumulants in 
proton–proton (pp) collisions at 13 TeV, using iEBE-VISHNU hy-
brid model with HIJING initial condition. With properly tuned 
parameters, our model calculations quantitatively describe the 
measured 2-particle cumulants, including the integrated sec-
ond and third order flow coefficient vn{2} (n = 2, 3) for all 
charged hadrons. In addition, iEBE-VISHNU also reproduces the 
pT-differential elliptic flow v2(pT) for all charged and identified 
hadrons (K 0 and �) in the high multiplicity pp collisions. We 
S
Fig. 5. (Color online) ε2 distributions of HIJING initial conditions at 0–0.1% cen-
trality bin.

also predicted the v2(pT) of pions, kaons and protons, which 
shows similar characteristic mass ordering feature as the cases in 
Pb–Pb and p–Pb collisions, and can be further examined in exper-
iments.

However, our iEBE-VISHNU calculations with HIJING ini-
tial conditions always give positive values of 4-particle cumulants 
c2{4} for various parameter sets, which can not reproduce the neg-
ative c2{4} measured by CMS and ATLAS. Further investigations 
showed that this positive c2{4} are not caused by possible non-
flow contributions, multiplicity fluctuations or the multi-particle 
cumulant method applied in our calculations. In fact, it is origi-
nated from the imprinted fluctuation pattern of the HIJING initial 
conditions, where the fluctuations of the eccentricity ε2 increase 
with the increase of the mean value. Due to the approximate lin-
ear response between v2 and ε2, the mean value and fluctuations 
of the second order flow coefficient v2 present a similar trend, 
which fails to simultaneously fit the measured 2- and 4- particle 
cumulants with various possible parameters. In order to simulta-
neously fit the flow-like data in high multiplicity pp collisions at 
13 TeV within the framework of hydrodynamics, other initial con-
dition model for the small systems should be further developed. 
Besides hydrodynamics, it is also necessary to investigate these 2-
and 4- particle cumulants in high energy pp collisions within other 
theoretical approaches, to better understand the physics in high 
energy pp collisions.
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Appendix A. c2{4} from standard method and 2- and 3-subevent 
methods

In Ref. [64,65], it was argued that 4-particle cumulants with 2-
and 3-subevent methods could further remove the residual non-
flow, e.g. from the contributions of jets. Considering that non-flow 
effects in iEBE-VISHNU simulations are not influenced by jet, but 
mainly contributed by resonance decays, we implement the stan-
dard method to calculate the 4-particle cumulant c2{4} in Sec. 3. In 
Fig. 6 (a), we further compare the c2{4} from the standard method 
and from the 2-subevent and 3-subevent methods, using iEBE-
VISHNU simulations with HIJING initial conditions (para-I). It 
shows a good agreement for these three methods, which indicates 
that the non-flow in our calculations have been cleanly removed 
by the standard 4-particle cumulant, which are not necessary to 
further implement the 2- and 3-subevent methods that require 
larger statistical runs.

Appendix B. c2{4} from hydrodynamics and iEBE-VISHNU

To further check the positive values of c2{4} in high multiplicity 
(Nch ∼ 100) pp collisions from our model calculations, we compare 
c2{4} from (a) hydrodynamic evolution with Cooper-Fryer freeze-
out, (b) hydrodynamic evolution with Monte-Carlo particle gener-
ator (c) full iEBE-VISHNU simulations with both hydrodynamic 
evolution and UrQMD afterburner. For the pure hydrodynamic cal-
culations, we evolve the systems to Tsw = 148 MeV and then 
calculate c2{4} with the hydrodynamic definition c2{4} = −v4

2{4} =
〈
v4

2

〉 − 2 
〈
v2

2

〉2
for case (a) and using the standard 4-particle cumu-

lant method for cases (b) and (c). As shown in Fig. 6 (b), these two 
results from cases (a) and (b) almost overlap within error bars, 
which indicates that the 4- particle cumulant c2{4} can properly 
describe the flow and flow fluctuations in a small collision sys-
tem with Nch ∼ 100. In Fig. 6 (b), we also study the effects of 
hadronic evolution on c2{4} through comparing case (b) the pure 
hydrodynamic calculations and case (c) the full iEBE-VISHNU
simulations, which shows that the hadronic scatterings and decays 
slightly decrease c2{4}.
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