2 research outputs found
Disentangled Graph Social Recommendation
Social recommender systems have drawn a lot of attention in many online web
services, because of the incorporation of social information between users in
improving recommendation results. Despite the significant progress made by
existing solutions, we argue that current methods fall short in two
limitations: (1) Existing social-aware recommendation models only consider
collaborative similarity between items, how to incorporate item-wise semantic
relatedness is less explored in current recommendation paradigms. (2) Current
social recommender systems neglect the entanglement of the latent factors over
heterogeneous relations (e.g., social connections, user-item interactions).
Learning the disentangled representations with relation heterogeneity poses
great challenge for social recommendation. In this work, we design a
Disentangled Graph Neural Network (DGNN) with the integration of latent memory
units, which empowers DGNN to maintain factorized representations for
heterogeneous types of user and item connections. Additionally, we devise new
memory-augmented message propagation and aggregation schemes under the graph
neural architecture, allowing us to recursively distill semantic relatedness
into the representations of users and items in a fully automatic manner.
Extensive experiments on three benchmark datasets verify the effectiveness of
our model by achieving great improvement over state-of-the-art recommendation
techniques. The source code is publicly available at:
https://github.com/HKUDS/DGNN.Comment: Accepted by IEEE ICDE 202
Knowledge-aware Coupled Graph Neural Network for Social Recommendation
Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users’ social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN