12 research outputs found

    Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells

    Get PDF
    Selection-free, scarless genome editing in human pluripotent stem cells (PSCs) by utilizing ribonucleoprotein (RNP) of CRISPR-Cas9 is a useful tool for a variety of applications. However, the process can be hampered by time-consuming subcloning steps and inefficient delivery of the RNP complex and ssDNA template. Here, we describe the optimized protocol to introduce a single nucleotide change or a loxP site insertion in feeder-free, xeno-free iPSCs by utilizing MaxCyte and 4D-Nucleofector electroporators. For complete details on the use and execution of this protocol, please refer to Kagita et al. (2021) and Xu et al. (2019)

    Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein

    Get PDF
    CRISPR-Cas9がヒト細胞内のRNAで阻害されてしまう現象を発見し、iPS細胞での効率的な相同組み換えゲノム編集技術を実現. 京都大学プレスリリース. 2021-03-12.A simple step to enhance CRISPR-Cas9 genome editing. 京都大学プレスリリース. 2021-03-12.Combined with CRISPR-Cas9 technology and single-stranded oligodeoxynucleotides (ssODNs), specific single-nucleotide alterations can be introduced into a targeted genomic locus in induced pluripotent stem cells (iPSCs); however, ssODN knockin frequency is low compared with deletion induction. Although several Cas9 transduction methods have been reported, the biochemical behavior of CRISPR-Cas9 nuclease in mammalian cells is yet to be explored. Here, we investigated intrinsic cellular factors that affect Cas9 cleavage activity in vitro. We found that intracellular RNA, but not DNA or protein fractions, inhibits Cas9 from binding to single guide RNA (sgRNA) and reduces the enzymatic activity. To prevent this, precomplexing Cas9 and sgRNA before delivery into cells can lead to higher genome editing activity compared with Cas9 overexpression approaches. By optimizing electroporation parameters of precomplexed ribonucleoprotein and ssODN, we achieved efficiencies of single-nucleotide correction as high as 70% and loxP insertion up to 40%. Finally, we could replace the HLA-C1 allele with the C2 allele to generate histocompatibility leukocyte antigen custom-edited iPSCs

    Generation of hypoimmunogenic induced pluripotent stem cells by CRISPR-Cas9 system and detailed evaluation for clinical application

    Get PDF
    In order to expand the promise of regenerative medicine using allogeneic induced pluripotent stem cells (iPSCs), precise and efficient genome editing of human leukocyte antigen (HLA) genes would be advantageous to minimize the immune rejection caused by mismatches of HLA type. However, clinical-grade genome editing of multiple HLA genes in human iPSC lines remains unexplored. Here, we optimized the protocol for good manufacturing practice (GMP)-compatible CRISPR-Cas9 genome editing to deplete the three gene locus (HLA-A, HLA-B, and CIITA genes) simultaneously in HLA homozygous iPSCs. The use of HLA homozygous iPSCs has one main advantage over heterozygous iPSCs for inducing biallelic knockout by a single gRNA. RNA-seq and flow cytometry analyses confirmed the successful depletion of HLAs, and lineage-specific differentiation into cardiomyocytes was verified. We also confirmed that the pluripotency of genome-edited iPSCs was successfully maintained by the three germ layers of differentiation. Moreover, whole-genome sequencing, karyotyping, and optical genome mapping analyses revealed no evident genomic abnormalities detected in some clones, whereas unexpected copy number losses, chromosomal translocations, and complex genomic rearrangements were observed in other clones. Our results indicate the importance of multidimensional analyses to ensure the safety and quality of the genome-edited cells. The manufacturing and assessment pipelines presented here will be the basis for clinical-grade genome editing of iPSCs

    Optimization of the proliferation and persistency of CAR T cells derived from human induced pluripotent stem cells

    Get PDF
    CARシグナルを補完する遺伝子改変により *iCAR-T細胞の固形がん治療効果が改善される. 京都大学プレスリリース. 2022-12-13.Genetic modifications boosting CAR signaling improve the therapeutic efficacy of iPSC-derived CAR-T cells against solid tumors. 京都大学プレスリリース. 2022-12-13.The effectiveness of chimaeric antigen receptor (CAR) T-cell immunotherapies against solid tumours relies on the accumulation, proliferation and persistency of T cells at the tumour site. Here we show that the proliferation of CD8αβ cytotoxic CAR T cells in solid tumours can be enhanced by deriving and expanding them from a single human induced-pluripotent-stem-cell clone bearing a CAR selected for efficient differentiation. We also show that the proliferation and persistency of the effector cells in the tumours can be further enhanced by genetically knocking out diacylglycerol kinase, which inhibits antigen-receptor signalling, and by transducing the cells with genes encoding for membrane-bound interleukin-15 (IL-15) and its receptor subunit IL-15Rα. In multiple tumour-bearing animal models, the engineered hiPSC-derived CAR T cells led to therapeutic outcomes similar to those of primary CD8 T cells bearing the same CAR. The optimization of effector CAR T cells derived from pluripotent stem cells may aid the development of long-lasting antigen-specific T-cell immunotherapies for the treatment of solid tumours

    Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping

    Get PDF
    Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond

    CRISPR-Cas9を用いた個別HLA遺伝子破壊による免疫適合性の向上したiPS細胞の作製

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第21688号医博第4494号新制||医||1036(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 河本 宏, 教授 生田 宏一, 教授 江藤 浩之学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells

    Get PDF
    Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations

    CRISPR-Cas3 induces broad and unidirectional genome editing in human cells

    Get PDF
    Although single-component Class 2 CRISPR systems, such as type II Cas9 or type V Cas12a (Cpf1), are widely used for genome editing in eukaryotic cells, the application of multi-component Class 1 CRISPR has been less developed. Here we demonstrate that type I-E CRISPR mediates distinct DNA cleavage activity in human cells. Notably, Cas3, which possesses helicase and nuclease activity, predominantly triggered several thousand base pair deletions upstream of the 5′-ARG protospacer adjacent motif (PAM), without prominent off-target activity. This Cas3-mediated directional and broad DNA degradation can be used to introduce functional gene knockouts and knock-ins. As an example of potential therapeutic applications, we show Cas3-mediated exon-skipping of the Duchenne muscular dystrophy (DMD) gene in patient-induced pluripotent stem cells (iPSCs). These findings broaden our understanding of the Class 1 CRISPR system, which may serve as a unique genome editing tool in eukaryotic cells distinct from the Class 2 CRISPR system

    iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity

    Get PDF
    ゲノム編集技術を用いてiPS細胞から「ユニバーサル」な血小板の作製に成功. 京都大学プレスリリース. 2020-01-07.The ex vivo production of platelets depleted of human leukocyte antigen class I (HLA-I) could serve as a universal measure to overcome platelet transfusion refractoriness caused by HLA-I incompatibility. Here, we developed human induced pluripotent cell-derived HLA-I-deficient platelets (HLA-KO iPLATs) in a clinically applicable imMKCL system by genetic manipulation and assessed their immunogenic properties including natural killer (NK) cells, which reject HLA-I downregulated cells. HLA-KO iPLATs were deficient for all HLA-I but did not elicit a cytotoxic response by NK cells in vitro and showed circulation equal to wild-type iPLATs upon transfusion in our newly established Hu-NK-MSTRG mice reconstituted with human NK cells. Additionally, HLA-KO iPLATs successfully circulated in an alloimmune platelet transfusion refractoriness model of Hu-NK-MISTRG mice. Mechanistically, the lack of NK cell-activating ligands on platelets may be responsible for evading the NK cell response. This study revealed the unique non-immunogenic property of platelets and provides a proof of concept for the clinical application of HLA-KO iPLATs
    corecore