9 research outputs found

    Ecological Restoration and Rehabilitation: Standards and Case Studies from Europe and China

    Get PDF
    A range of European Directives or National legislation/ policies and implementation programmes have led to an actual demand for river restoration tools and techniques. The drivers of restoration practices for freshwater ecosystem restoration in Europe will be presented. The Water Framework Directive and other water-related directives improved water protection and also promoted: (1) the development of a dynamic, world-leading water sector that includes 9000 active SMEs and provides almost 500 000 full-time equivalent jobs in Europe; (2) the stimulation for green and blue growth and to become more resource efficient - e.g. water management technologies are at the heart of eco-innovation. Many of the provisioning, regulatory, and cultural services can be enhanced through development of water resources (e.g. large-scale dams can increase agricultural production by creating local water availability); however, there are often off-setting losses or trade-offs between these service categories, such as loss of downstream water quantity and impacts on aquatic food chain and other agricultural areas. Case studies of the application of the legislative framework from Europe will be presented. Joint cooperation projects previously developed between China and Europe were addressed

    Comparing Policy Mixes and Freshwater Ecosystem Restoration Practices Results in Europe and China

    Get PDF
    The objective of the present study was to evaluate current legal framework in EU and China regarding the improvement restoration of freshwater ecosystems. This policy study combines 1) the information gathered through the compilation of scientific literature regarding restoration practices in Europe and China, 2) the results from a Worksop session held in Beijing (6th and 7th of February 2018) and 3) an online survey regarding the evaluation of restoration projects developed in Europe and China. The diverse array of legislative pieces and obligations is set for different types of environmental problems, which is probably also a reflection of the maturation status of implementation of the several legislative pieces. The main degradation driver for restoration in Europe was the over-utilization of water resources (21.0%) and in China it was water pollution (29.4%). Another interesting aspect is that hydro-morphology restoration (28.6%) is the main restoration measure applied in the European projects surveyed, as opposed to threats removal in China (30.8%). This is probably due to the different implementation drivers in Europe and China, since the Water Framework Directive calls for the need on hydro-morphologic restoration, and in China all the main restoration drivers (1. the Three red lines of Most Stringent Water Resources Management; 2. Action Plan for Prevention and Control of Water Pollution; and 3. the Law for Prevention and Control of Water Pollution) call for pollution control and removal

    Mapping the Distribution of Water Resource Security in the Beijing-Tianjin-Hebei Region at the County Level under a Changing Context

    Get PDF
    The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.This study is supported by the National Key Research and Development Program of China (2016YFC0401401) and the National Natural Science Foundation of China (51609256, 51609122, 51522907, 51739011, and 51569026). Partial support is also from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2017QNRC001

    Experimental Study on the Impact of Pulsed Flow Velocity on the Scouring of Benthic Algae from a Mountainous River

    No full text
    The decrease in periodic scouring of pulsed flows in regulated rivers can result in algal communities dominated by filamentous algae, not available as food sources for fish and macroinvertebrates. To study the pulsed flow velocity required to scour benthic algae from natural river beds, the removal effects on the algal biomass and resistances of different species were tested in a laboratory flume at different velocities of 0.8, 1.1, 1.4, 1.7, and 2.0 m/s. The removal of total algal biomass showed a significant positive relationship with increasing velocities, which reached 22% at 2.0 m/s. The biomass removal of green algae and diatoms was higher than that of blue–green algae. The flow velocity at 1.4 m/s had a clear removal effect on filamentous algae. The velocity higher than 1.7 m/s caused a significant increase in the removal percentage of total biomass dominated by diatoms and blue–green algae. To reduce the filamentous algae and retain the diatoms and blue–green algae, a range of near bed flow velocity was suggested to be 1.4–1.7 m/s. This range could serve as a reference for required pulsed flow velocity to reduce the growth of excessive or nuisance periphyton

    A Study of the Impact of Different Flow Velocities and Light Colors at the Entrance of a Fish Collection System on the Upstream Swimming Behavior of Juvenile Grass Carp

    No full text
    When designing a fish collection system for fishpass facilities, considering the approach⁻avoidance behavior of fish under different flow velocities and light colors, is essential to ensure a good fishpass efficiency. In this study, a generalized physical model for a fish collection system entrance, including the fish collection system channel, the fish luring channel, and the mainstream channel was designed. Grass carp, a representative fish of “four major Chinese carps„, was selected as the research object, and the approach⁻avoidance behavior of 660 juvenile grass carps (8⁻12cm), under different flow velocity and light color at a water temperature of 28 ± 1 °C, were investigated. Three general indicators that reflect the fish-luring ability of a fish collection system were proposed, including the optimal flow velocity at the fish collection system entrance, the optimal ratio between the flow velocities at the entrances of the fish luring channel and the fish collection system channel, and the optimal light colors for approach⁻avoidance behaviors of the fish. Results indicate that (1) there was an optimal flow velocity (approximately 0.3 m/s) at the fish collection system entrance; (2) there existed an optimal ratio (approximately 2.3:1) between the flow velocities at the entrances of the fish luring channel and the fish collection system channel; (3) there were different approach⁻avoidance behaviors of the fish to various light colors, and the percentages of successful migration of the juvenile grass carps were 0.4%, 0.57%, 0.88%, and 1.43% of that obtained under natural light, when red, white, green, and blue light were used, respectively, at the fish collection system entrance, indicating that the juvenile grass carps would avoid the red light while approaching the blue light. The three proposed general indicators are the keys in the design of a fish collection system entrance, for successful migration of grass carps. The generalized physical model and the experimental devices and methods will provide important references for studying a fish collection system entrance for other fish species

    Thrust Improvement of a Biomimetic Robotic Fish by Using a Deformable Caudal Fin

    No full text
    In nature, live fish has various deformable fins which are capable to promote the swimming speed, efficiency, stability, and thrust generation. However, this feature is rarely possessed by current man-made biomimetic robotic fishes. In this paper, a novel deformable caudal fin platform is proposed to improve thrust generation of biomimetic robotic fish. First, the design of the deformable caudal fin is given, which includes a servo motor, a gear-based transmission mechanism, fin bones, and silica membrane. Second, an improved Central Pattern Generator (CPG) model was developed to coordinately control the flapping of the tail and the deformation of the caudal fin. More specifically, three deformation patterns, i.e., conventional nondeformable mode, sinusoidal-based mode, instant mode, of the caudal fin are investigated. Third, extensive experiments are conducted to explore the effects of deformation of the caudal fin on the thrust generation of the biomimetic robotic fish. It was found that the instant mode of the caudal fin has the largest thrust, which sees a 27.5% improvement compared to the conventional nondeformable mode, followed by the sinusoidal-based mode, which also sees an 18.2% improvement. This work provides a novel way to design and control the deformation of the caudal fin, which sheds light on the development of high-performance biomimetic robotic fish

    Hydromorphological Assessment as the Basis for Ecosystem Restoration in the Nanxi River Basin (China)

    No full text
    Hydromorphology is a major component of riverine ecosystems. Therefore, proper assessments of the status quo, as well as the detection of pressures in river basins, are of high relevance. Process-based morphological methods have been developed, relying on a broad data basis and resulting in suitable instruments, such as the Morphological Quality Index (MQI). In this study, the hydromorphological status of the Nanxi river system in Eastern China was assessed by an adapted application of the MQI. Adaptations and amendments in the methodical approach were developed in cycles and carried out to transfer the well-approved method for European river systems to another geographical setting. The strengths of the tested approach are the few data requirements, the applicability for modified river basins, and the decoupling of historical information. The assessment of 161 river kilometers resulted in a hydromorphological status quo with the focus being a relative comparison of different sections ranging from “moderate” to “bad”, with an average classification of a “poor” state. On the one hand, the results build the basis for future restoration and river management planning, specifically, and on the other hand, they create a foundation for the development of an assessment method fitted for modified river systems conditions

    Cuproptosis related gene PDHB is identified as a biomarker inversely associated with the progression of clear cell renal cell carcinoma

    No full text
    Abstract Background Cuproptosis is a newly discovered programmed cell death dependent on mitochondrial respiratory disorder induced by copper overload. Pyruvate dehydrogenase E1 subunit beta (PDHB) is one of the cuproptosis genesand is a nuclear-encoded pyruvate dehydrogenase, which catalyzes the conversion of pyruvate to acetyl coenzyme A. However, the mechanism of PDHB in clear cell renal cell carcinoma (ccRCC) remains unclear. Methods We used data from TCGA and GEO to assess the expression of PDHB in normal and tumor tissues. We further analyzed the relationship between PDHB and somatic mutations and immune infiltration. Finally, we preliminarily explored the impact of PDHB on ccRCC. Results The expression level of PDHB was lower in tumor tissue compared with normal tissue. Meanwhile, the expression level of PDHB was also lower in high-grade tumors than low-grade tumors. PDHB is positively correlated with prognosis in ccRCC. Furthermore, PDHB may be associated with decreased risk of VHL, PBRM1 and KDM5C mutations. In 786-O cells, copper chloride could promote the expression of cuproptosis genes (DLAT, PDHB and FDX1) and inhibit cell growth. Last but not least, we found that PDHB could inhibit the proliferation and migration of ccRCC cells. Conclusion Our results demonstrated that PDHB could inhibit the proliferation, migration and invasion in ccRCC cells, which might be a prognostic predictor of ccRCC. Targeting this molecular might provide a new therapeutic strategy for patients with advanced ccRCC

    Hydromorphological Assessment as the Basis for Ecosystem Restoration in the Nanxi River Basin (China)

    No full text
    Hydromorphology is a major component of riverine ecosystems. Therefore, proper assessments of the status quo, as well as the detection of pressures in river basins, are of high relevance. Process-based morphological methods have been developed, relying on a broad data basis and resulting in suitable instruments, such as the Morphological Quality Index (MQI). In this study, the hydromorphological status of the Nanxi river system in Eastern China was assessed by an adapted application of the MQI. Adaptations and amendments in the methodical approach were developed in cycles and carried out to transfer the well-approved method for European river systems to another geographical setting. The strengths of the tested approach are the few data requirements, the applicability for modified river basins, and the decoupling of historical information. The assessment of 161 river kilometers resulted in a hydromorphological status quo with the focus being a relative comparison of different sections ranging from “moderate” to “bad”, with an average classification of a “poor” state. On the one hand, the results build the basis for future restoration and river management planning, specifically, and on the other hand, they create a foundation for the development of an assessment method fitted for modified river systems conditions
    corecore