10 research outputs found

    TDLE: 2-D LiDAR Exploration With Hierarchical Planning Using Regional Division

    Full text link
    Exploration systems are critical for enhancing the autonomy of robots. Due to the unpredictability of the future planning space, existing methods either adopt an inefficient greedy strategy or require a lot of resources to obtain a global solution. In this work, we address the challenge of obtaining global exploration routes with minimal computing resources. A hierarchical planning framework dynamically divides the planning space into subregions and arranges their orders to provide global guidance for exploration. Indicators that are compatible with the subregion order are used to choose specific exploration targets, thereby considering estimates of spatial structure and extending the planning space to unknown regions. Extensive simulations and field tests demonstrate the efficacy of our method in comparison to existing 2D LiDAR-based approaches. Our code has been made public for further investigation.Comment: Accepted in IEEE International Conference on Automation Science and Engineering (CASE) 202

    Phenol Adsorption Mechanism of Organically Modified Bentonite and Its Microstructural Changes

    No full text
    Bentonite was modified with cetyltrimethylammonium bromide (CTAB). The organically modified bentonite (OMB) was used to remove phenol from aqueous solution, the microstructural changes were characterized by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), and phenol adsorption kinetic was obtained using batch adsorption test results. The results indicated that the rate of adsorption of phenol onto the OMB was positively correlated with the initial concentration, and the maximum adsorption capacity was found to be 10.1 mg/g at the initial concentration of 150 mg/L at 25 °C and pH 10. The investigations of adsorption kinetics models showed that the adsorption kinetic was better reflected by the pseudo-second-order kinetic model. Furthermore, the properties of the OMB samples with different adsorption times were obtained by SEM and XRD. The statistic analysis revealed that the pore diameter of the OMB samples decreased with the increasing adsorption time and gradually reached equilibrium

    Phenol Adsorption Mechanism of Organically Modified Bentonite and Its Microstructural Changes

    No full text
    Bentonite was modified with cetyltrimethylammonium bromide (CTAB). The organically modified bentonite (OMB) was used to remove phenol from aqueous solution, the microstructural changes were characterized by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), and phenol adsorption kinetic was obtained using batch adsorption test results. The results indicated that the rate of adsorption of phenol onto the OMB was positively correlated with the initial concentration, and the maximum adsorption capacity was found to be 10.1 mg/g at the initial concentration of 150 mg/L at 25 °C and pH 10. The investigations of adsorption kinetics models showed that the adsorption kinetic was better reflected by the pseudo-second-order kinetic model. Furthermore, the properties of the OMB samples with different adsorption times were obtained by SEM and XRD. The statistic analysis revealed that the pore diameter of the OMB samples decreased with the increasing adsorption time and gradually reached equilibrium

    Table_3_Comparative physiological analyses and the genetic basis reveal heat stress responses mechanism among different Betula luminifera populations.XLSX

    No full text
    Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix–loop–helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.</p

    Table_2_Comparative physiological analyses and the genetic basis reveal heat stress responses mechanism among different Betula luminifera populations.XLSX

    No full text
    Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix–loop–helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.</p

    Image_2_Comparative physiological analyses and the genetic basis reveal heat stress responses mechanism among different Betula luminifera populations.TIF

    No full text
    Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix–loop–helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.</p

    Image_3_Comparative physiological analyses and the genetic basis reveal heat stress responses mechanism among different Betula luminifera populations.TIF

    No full text
    Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix–loop–helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.</p

    Image_1_Comparative physiological analyses and the genetic basis reveal heat stress responses mechanism among different Betula luminifera populations.TIF

    No full text
    Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix–loop–helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.</p

    Table_1_Comparative physiological analyses and the genetic basis reveal heat stress responses mechanism among different Betula luminifera populations.XLSX

    No full text
    Betula luminifera is a subtropical fast-growing timber species with high economic value. However, along with global warming, heat stress become one of the main environmental variables that limit the productivity of B. luminifera, and the response of diverse geographic populations to high temperatures is still unclear. In order to offer a comprehensive understanding of the behavior of B. luminifera under heat stress, the physiological responses of six B. luminifera populations (across the core distribution area) were described in this work in an integrated viewpoint. The results showed that a multi-level physiological regulatory network may exist in B. luminifera, the first response was the activity of resistant enzymes [e.g., peroxidase (POD)] at a preliminary stage of 2 h heat stress, and then the proline (osmoregulation substance) content began to increase after 24 h of continuous high-temperature treatment. In addition, photosynthesis was stronlgly affected by heat stress, and the net photosynthetic rate (Pn) showed a downward trend under heat treatment in all six B. luminifera populations. Interestingly, although the physiological change patterns of the six B. luminifera populations were relatively consistent for the same parameter, there were obvious differences among different populations. Comprehensive analysis revealed that the physiological response of Rongshui (RS) was the most stable, and this was the representative B. luminifera population. Illumina RNA-seq analysis was applied to reveal the specific biological process of B. luminifera under heat stress using the RS population, and a total of 116,484 unigenes were obtained. The differentially expressed genes (DEGs) between different time periods under heat stress were enriched in 34 KEGG pathways, and the limonene and pinene degradation pathway was commonly enriched in all pairwise comparisons. Moreover, transcription factors including bHLH (basic helix–loop–helix), MYB, WRKY, and NAC (NAM, ATAF1/2, and CUC2) were identified. In this study, the physiological response and tolerance mechanisms of B. luminifera under high temperature stress were revealed, which can conducive to the basis of B. luminifera selection and resistance assessment for cultivation and breeding.</p
    corecore