22 research outputs found

    Genetic analysis and molecular markers associated with multi-gynoecia (Mg) gene in Trigrain wheat

    Get PDF
    Publisher's version/PDFTrigrain wheat normally produces up to three gynoecia in a single floret and forms three close-set grains. The gene conferring the multi grain phenotype was earlier designated Mg, the multiple gynoecia gene. Different genetic patterns controlling this trait have been reported. In the present work we studied the inheritance of the three grains trait and identified simple sequence repeats (SSR) markers linked to the Mg gene. Segregation analysis in the cross IGDB-TW (trigrain wheat)/Chinese Spring confirmed that a single dominant gene controlled the three grains trait. An allelism test showed that the same gene controlled the trigrain trait in line Trigrain-Yin 1. A total of 339 microsatellite markers were tested for polymorphism by bulked segregation analysis (BSA) in an F2 population. Six microsatellite markers, Xcfd233, Xgdm6, Xgdm87, Xgwm311, Xgwm349 and Xgwm539, on chromosome 2DL, were linked to Mg. Using the CS 2D deletion lines, Mg gene was localized to the distal region of chromosome 2DL. The microsatellite markers identified in this study have the potential for further mapping and map-based cloning of the gene

    On the Gauss Map of Surfaces of Revolution with Lightlike Axis in Minkowski 3-Space

    No full text
    By studying the Gauss map G and Laplace operator Δh of the second fundamental form h, we will classify surfaces of revolution with a lightlike axis in 3-dimensional Minkowski space and also obtain the surface of Enneper of the 2nd kind, the surface of Enneper of the 3rd kind, the de Sitter pseudosphere, and the hyperbolic pseudosphere that satisfy condition ΔhG=ΛG, Λ being a 3×3 real matrix

    Genetic studies on saline and sodic tolerances in soybean

    No full text

    Genotypic variation in salinity tolerance and its association with nodulation and nitrogen uptake in soybean

    No full text
    Saline soils hamper various physiological functions in soybean [Glycine max (L.) Merr.]. One example is the reduction in nitrogen (N) uptake capacity, a major dysfunction that limits soybean growth and yield under saline conditions. Previous studies have revealed that tolerance to salinity varies with cultivar; however, the cultivars used in these studies were selected solely based on agro-morphological traits. In this study, we examined genotypic variation in salinity tolerance among 85 soybean genotypes which were selected based on an assessment of both single nucleotide polymorphisms (SNP) markers and agro-morphological traits. Additionally, we examined whether salt tolerance is associated with nodulation and N uptake. We used a subset of the world soybean mini-core collection (80 cultivars) and an additional five cultivars/genetic lines (NILs72-T, NILs72-S, Enrei, En-b0-1, and En1282). All plants were grown in pots and treated with saline (final concentration of 150 mM NaCl) during the vegetative growth stage. To evaluate salinity tolerance, we used the ratio of saline-treated (S) to control (C) plant total dry weight [DW (S/C)]. The ratio differed markedly according to genotype. Furthermore, salinity-tolerant genotypes exhibited superior nodulation, leaf greenness, and N uptake under saline conditions. These results indicate that there is a marked genotypic variation in salinity tolerance, and that the tolerant genotypes exhibit greater nodulation and N uptake, although further studies are needed to clarify whether the superior nodulation and N uptake of salinity-tolerant genotypes are responsible for the observed tolerance

    Regulation of root-to-leaf Na and Cl transport and its association with photosynthetic activity in salt-tolerant soybean genotypes

    No full text
    Soil salinity is a major constraint to sustainable crop production. Genetic improvements are needed for growing soybean in salinity-prone environments. Salt-tolerant soybean genotypes alleviate a reduction in photosynthesis and growth under saline conditions; however, the detailed mechanisms involved remain unclear. Here, we aimed to clarify how Na and Cl root-to-leaf transport is quantitatively regulated, and to identify whether photosynthetic tolerance depends on traits associated with either stomata or with mesophyll tissues. Two pairs of pot-grown soybean near-isogenic lines (NILs) consisting of tolerant and susceptible counterparts, derived from a cross between salt-tolerant FT-Abyara and salt-sensitive C01, were subjected to salinity treatment in a rainout greenhouse. Comparison of photosynthetic responses between genotypes indicated that genotypic differences in salinity tolerance depended on the ability for sustained CO2 assimilation in mesophyll tissues, rather than stomatal conductance. The ratio of photosynthetic rate to intercellular CO2 concentration (A/Ci) declined exponentially with increasing Na and Cl concentration regardless of genotype, but tolerant genotypes effectively kept both elements at significantly low levels. Under saline conditions, tolerant genotypes reduced Na and Cl content at the two transport pathways: from root to stem, and from stem to leaf, but the reduction of Cl at each pathway was only minor. These results suggest that integrating genetic capacity for Cl transport regulation and osmotic adjustment should be an important target in salinity-tolerance soybean breeding
    corecore