5,267 research outputs found
A Fuzzy Group Prioritization Method for Deriving Weights and its Software Implementation
Several Multi-Criteria Decision Making (MCDM) methods involve pairwise comparisons to obtain the preferences of decision makers (DMs). This paper proposes a fuzzy group prioritization method for deriving group priorities/weights from fuzzy pairwise comparison matrices. The proposed method extends the Fuzzy Preferences Programming Method (FPP) by considering the different importance weights of multiple DMs . The elements of the group pairwise comparison matrices are presented as fuzzy numbers rather than exact numerical values, in order to model the uncertainty and imprecision in the DMs’ judgments. Unlike the known fuzzy prioritization techniques, the proposed method is able to derive crisp weights from incomplete and fuzzy set of comparison judgments and does not require additional aggregation procedures. A prototype of a decision tool is developed to assist DMs to implement the proposed method for solving fuzzy group prioritization problems in MATLAB. Detailed numerical examples are used to illustrate the proposed approach
Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule
In this paper, a likelihood based evidence acquisition approach is proposed
to acquire evidence from experts'assessments as recorded in historical
datasets. Then a data-driven evidential reasoning rule based model is
introduced to R&D project selection process by combining multiple pieces of
evidence with different weights and reliabilities. As a result, the total
belief degrees and the overall performance can be generated for ranking and
selecting projects. Finally, a case study on the R&D project selection for the
National Science Foundation of China is conducted to show the effectiveness of
the proposed model. The data-driven evidential reasoning rule based model for
project evaluation and selection (1) utilizes experimental data to represent
experts' assessments by using belief distributions over the set of final
funding outcomes, and through this historic statistics it helps experts and
applicants to understand the funding probability to a given assessment grade,
(2) implies the mapping relationships between the evaluation grades and the
final funding outcomes by using historical data, and (3) provides a way to make
fair decisions by taking experts' reliabilities into account. In the
data-driven evidential reasoning rule based model, experts play different roles
in accordance with their reliabilities which are determined by their previous
review track records, and the selection process is made interpretable and
fairer. The newly proposed model reduces the time-consuming panel review work
for both managers and experts, and significantly improves the efficiency and
quality of project selection process. Although the model is demonstrated for
project selection in the NSFC, it can be generalized to other funding agencies
or industries.Comment: 20 pages, forthcoming in International Journal of Project Management
(2019
- …