109 research outputs found

    Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12

    Get PDF
    No abstract available.The pro-Th2 cytokine IL-33 is now emerging as an important Th1 cytokine-IFN-γ inducer in murine CD4+ T cells that is essential for protective cell-mediated immunity against viral infection in mice. However, whether IL-33 can promote human Th1 cell differentiation and how IL-33 polarizes Th1 cells is less understood. We assessed the ability of IL-33 to induce Th1 cell differentiation and IFN-γ production in vitro and in vivo. We report here that IL-33 alone had no ability in Th1 cell polarization. However it potentiated IL-12-mediated Th1 cell differentiation and IFN-γ production in TCR-stimulated murine and human CD4+ T cells in vitro and in vivo. IL-33 promoted Th1 cell development via MyD88 and synergized with IL-12 to enhance St2 and IL-12R expression in CD4+ T cells. These data therefore provide a novel mechanism for Th1 cell differentiation and optimal induction of a Type 1 response. Thus, IL-33 is capable of inducing IL-12-dependent Th1 cell differentiation in human and mouse CD4+ T cells

    IL28B is associated with outcomes of chronic HBV infection

    Get PDF
    Purpose The role of IL28B gene variants and expression in hepatitis B virus (HBV) infections are not well understood. Here, we evaluated whether IL28B gene expression and rs12979860 variations are associated with HBV outcomes. Materials and Methods IL28B genetic variations (rs12979860) were genotyped by pyrosequencing of DNA samples from 137 individuals with chronic HBV infection [50 inactive carriers (IC), 34 chronic hepatitis B (CHB), 27 cirrhosis, 26 hepatocellular carcinoma (HCC)], and 19 healthy controls. IL28A/B mRNA expression in peripheral blood mononuclear cells was determined by qRT-PCR, and serum IL28B protein was measured by ELISA. Results Patients with IL28B C/C genotype had greater IL28A/B mRNA expression and higher IL28B protein levels than C/T patients. Within the various disease stages, compared to IC and healthy controls, IL28B expression was reduced in the CHB, cirrhosis, and HCC cohorts (CHB vs. IC, p=0.02; cirrhosis vs. IC, p=0.01; HCC vs. IC, p=0.001; CHB vs. controls, p&#60;0.01; cirrhosis vs. controls, p&#60;0.01; HCC vs. controls, p&#60;0.01). When stratified with respect to serum HBV markers in the IC and CHB cohorts, IL28B mRNA and protein levels were higher in HBeAg-positive than negative individuals (p=0.01). Logistic regression analysis revealed that factors associated with high IL28B protein levels were C/C versus C/T genotype [p=0.016, odds ratio (OR)=0.25, 95% confidence interval (CI)=0.08-0.78], high alanine aminotransferase values (p&#60;0.001, OR=8.02, 95% CI=2.64-24.4), and the IC stage of HBV infection (p&#60;0.001). Conclusion Our data suggest that IL28B genetic variations may play an important role in long-term development of disease in chronic HBV infections.</p

    IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    Get PDF
    Background&lt;p&gt;&lt;/p&gt; The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis.&lt;p&gt;&lt;/p&gt; Objectives&lt;p&gt;&lt;/p&gt; We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis.&lt;p&gt;&lt;/p&gt; Methods&lt;p&gt;&lt;/p&gt; Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry.&lt;p&gt;&lt;/p&gt; Results&lt;p&gt;&lt;/p&gt; IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo.&lt;p&gt;&lt;/p&gt; Conclusions&lt;p&gt;&lt;/p&gt; IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner

    The signal pathways and treatment of cytokine storm in COVID-19

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases

    IL-33 reduces the development of atherosclerosis

    Get PDF
    Atherosclerosis is a chronic inflammatory disease of the vasculature commonly leading to myocardial infarction and stroke. We show that IL-33, which is a novel IL-1–like cytokine that signals via ST2, can reduce atherosclerosis development in ApoE−/− mice on a high-fat diet. IL-33 and ST2 are present in the normal and atherosclerotic vasculature of mice and humans. Although control PBS-treated mice developed severe and inflamed atherosclerotic plaques in the aortic sinus, lesion development was profoundly reduced in IL-33–treated animals. IL-33 also markedly increased levels of IL-4, -5, and -13, but decreased levels of IFNγ in serum and lymph node cells. IL-33 treatment also elevated levels of total serum IgA, IgE, and IgG1, but decreased IgG2a, which is consistent with a Th1-to-Th2 switch. IL-33–treated mice also produced significantly elevated antioxidized low-density lipoprotein (ox-LDL) antibodies. Conversely, mice treated with soluble ST2, a decoy receptor that neutralizes IL-33, developed significantly larger atherosclerotic plaques in the aortic sinus of the ApoE−/− mice compared with control IgG-treated mice. Furthermore, coadministration of an anti–IL-5 mAb with IL-33 prevented the reduction in plaque size and reduced the amount of ox-LDL antibodies induced by IL-33. In conclusion, IL-33 may play a protective role in the development of atherosclerosis via the induction of IL-5 and ox-LDL antibodies

    PF-431396 hydrate inhibition of kinase phosphorylation during adherent-invasive Escherichia coli infection inhibits intra-macrophage replication and inflammatory cytokine release

    Get PDF
    Adherent-invasive Escherichia coli (AIEC) have been implicated in the aetiology of Crohn’s disease (CD). They are characterized by an ability to adhere to and invade intestinal epithelial cells, and to replicate intracellularly in macrophages resulting in inflammation. Proline-rich tyrosine kinase 2 (PYK2) has previously been identified as a risk locus for inflammatory bowel disease and a regulator of intestinal inflammation. It is overexpressed in patients with colorectal cancer, a major long-term complication of CD. Here we show that Pyk2 levels are significantly increased during AIEC infection of murine macrophages while the inhibitor PF-431396 hydrate, which blocks Pyk2 activation, significantly decreased intramacrophage AIEC numbers. Imaging flow cytometry indicated that Pyk2 inhibition blocked intramacrophage replication of AIEC with no change in the overall number of infected cells, but a significant reduction in bacterial burden per cell. This reduction in intracellular bacteria resulted in a 20-fold decrease in tumour necrosis factor α secretion by cells post-AIEC infection. These data demonstrate a key role for Pyk2 in modulating AIEC intracellular replication and associated inflammation and may provide a new avenue for future therapeutic intervention in CD

    Selective Expression and Functions of Interleukin 18 Receptor on T Helper (Th) Type 1 but not Th2 Cells

    Get PDF
    Interleukin (IL)-18 induces interferon (IFN)-γ synthesis and synergizes with IL-12 in T helper type 1 (Th1) but not Th2 cell development. We report here that IL-18 receptor (IL-18R) is selectively expressed on murine Th1 but not Th2 cells. IL-18R mRNA was expressed constitutively and consistently in long-term cultured clones, as well as on newly polarized Th1 but not Th2 cells. IL-18 sustained the expression of IL-12Rβ2 mRNA, indicating that IL-18R transmits signals that maintain Th1 development through the IL-12R complex. In turn, IL-12 upregulated IL-18R mRNA. Antibody against an IL-18R–derived peptide bound Th1 but not Th2 clones. It also labeled polarized Th1 but not Th2 cells derived from naive ovalbumin–T cell antigen receptor-αβ transgenic mice (D011.10). Anti–IL-18R antibody inhibited IL-18– induced IFN-γ production by Th1 clones in vitro. In vivo, anti–IL-18R antibody reduced local inflammation and lipopolysaccharide-induced mortality in mice. This was accompanied by shifting the balance from Th1 to Th2 responses, manifest as decreased IFN-γ and proinflammatory cytokine production and increased IL-4 and IL-5 synthesis. Therefore, these data provide a direct mechanism for the selective effect of IL-18 on Th1 but not Th2 cells. They also show that the synergistic effect of IL-12 and IL-18 on Th1 development may be due to the reciprocal upregulation of their receptors. Furthermore, IL-18R is a cell surface marker distinguishing Th1 from Th2 cells and may be a therapeutic target

    Selective Expression of a Stable Cell Surface Molecule on Type 2 but Not Type 1 Helper T Cells

    Get PDF
    T helper cell type 1 (Th1) and 2 (Th2) are central to immune regulation. However, no stable cell surface marker capable of distinguishing and separating these two subsets of CD4+ cells has yet been found. Using differential display PCR, we have identified a gene encoding a cell membrane bound molecule, originally designated ST2L, T1, DER4, or Fit, expressed constitutively and stably on the surface of murine Th2s, but not Th1s even after stimulation with a range of immunological stimuli. Antibody against a peptide derived from ST2L strongly and stably labeled the surface of cloned Th2s but not Th1s, and Th2s but not Th1s derived from naive T cells of ovalbumin T cell receptor–α/β transgenic mice. Three-color single cell flow cytometric analysis shows that cell surface ST2L coexpressed with intracellular interleukin (IL)-4, but not with interferon (IFN)-γ. The antibody selectively lysed Th2s in vitro in a complement-dependent manner. In vivo, it enhanced Th1 responses by increasing IFN-γ production and decreasing IL-4 and IL-5 synthesis. It induced resistance to Leishmania major infection in BALB/c mice and exacerbated collagen-induced arthritis in DBA/1 mice. Thus, ST2L is a stable marker distinguishing Th2s from Th1s and is also associated with Th2 functions. Hence, it may be a target for therapeutic intervention
    corecore