2,207 research outputs found

    On effects of regular S=1 dilution of S=1/2 antiferromagnetic Heisenberg chains by a quantum Monte Carlo simulation

    Full text link
    The effects of regular S=1 dilution of S=1/2 isotropic antiferromagnetic chain are investigated by the quantum Monte Carlo loop/cluster algorithm. Our numerical results show that there are two kinds of ground-state phases which alternate with the variation of S1=1S^1=1 concentration. When the effective spin of a unit cell is half-integer, the ground state is ferrimagnetic with gapless energy spectrum and the magnetism becomes weaker with decreasing of the S1S^1 concentration ρ=1/M\rho = 1/M. While it is integer, a non-magnetic ground state with gaped spectrum emerges and the gap gradually becomes narrowed as fitted by a relation of Δ1.25ρ\Delta \approx 1.25\sqrt{\rho}.Comment: 6 pages, 9 figure

    An Efficient Plot Fusion Method for High Resolution Radar Based on Contour Tracking Algorithm

    Get PDF
    With the development of radar system, the problem of enormous raw data has drawn much attention. A plot fusion method based on contour tracking algorithm is proposed to detect extended targets in a radar image. Firstly, the characteristic of radar image in complex environment is revealed. Then, the steps of traditional method, region growing method, and the proposed method are introduced. Meanwhile, the algorithm of tracking the contour of an extended target is illustrated in detail. It is not necessary to scan all the plots in the image, because the size of target is considered in the proposed method. Therefore, the proposed method is much more efficient than several existing methods. Lastly, the performance of several methods is tested using the raw data of two scenarios in real world. The experiment results show that the proposed method is practical and most likely to satisfy the real-time requirement in various complex environment

    Cardiac magnetic resonance analysis of left atrium function in patients with pre-apical hypertrophic cardiomyopathy

    Get PDF
    Background: Patients presenting with unexplained T wave inversion on electrocardiogram combined with thickened left ventricular apex but less than 15 mm had been proposed as a preclinical scope of apical hypertrophy cardiomyopathy (pre-ApHCM). However, analysis of left atrial (LA) function in these patients has not been studied. This study aims to evaluate the LA function in pre-ApHCM patients and compare it with patients with ApHCM using cardiac magnetic resonance (CMR) imaging. Methods: In this retrospective case-control study, a total of 3,593 CMR reports from Beijing Anzhen Hospital, Capital Medical University, China were reviewed. Finally, 31 pre-ApHCM patients were identified and 40 ApHCM and 31 normal controls were included for comparison. LA volumetric and strain were analyzed by CMR. Two-tailed one-way ANOVA was used to analyze the difference of three groups. Pearson correlation test was used for correlation analysis. Results: All of the volumetric parameters in pre-ApHCM group were higher than those in control group. LA reservoir (LA total EF, εs) and conduit function (LA passive EF, εe) parameters, were significantly different among the three groups, which were the lowest in the ApHCM group, intermediate in the pre-ApHCM group, and the highest in the control group ((all P<0.001). Compared with the control group, the LA booster pump function, both the booster EF and booster pump strain (εa) in ApHCM were impaired (P=0.003 and P=0.002 respectively). Meanwhile, only the εa was impaired (P=0.016) while LA booster EF was not (P=0.064) in the pre-ApHCM group, neither εa nor the booster EF show difference between the ApHCM and pre-ApHCM (P=0.272 and P=0.518 respectively). Conclusions: LA function features in pre-ApHCM patients were similar to ApHCM but different from the normal controls. In pre-ApHCM and ApHCM patients, LA reservoir and conduit function impaired earlier before left atrium enlarged and decreased progressively as apex thickens. These findings may help to understand the LA functional change from pre-ApHCM to ApHCM, and to detect subclinical changes in patients with pre-ApHCM before overt hypertrophy or clinical symptoms develop

    Honeycomb lattice Na2IrO3 at high pressures: A robust spin-orbit Mott insulator

    Get PDF
    The honeycomb iridate Na2IrO3 has received much attention as a candidate to realize a quantum spin liquid state, but the nature of its insulating state remains controversial. We found that the material exhibits structural transitions at 3 and 10 GPa. The former is accompanied by 166-meV suppression of the activation gap, but the energies for the low-lying interband transitions change by less than 10 meV. This can be reconciled in a picture in which the application of high pressure barely shifts the electronic bands, but rather merely broadens them. First-principles calculations uncover a strong correlation between the band gap and the β angle of the monoclinic structure, indicating non-negligible interlayer coupling. These results offer clear evidence for a spin-orbit Mott insulating state in Na2IrO3 and are inconsistent with the quasimolecular orbital model

    Multifunctional Solar Waterways: Plasma-Enabled Self-Cleaning Nanoarchitectures for Energy-Efficient Desalination

    Get PDF
    © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Evaporating seawater and separating salt from water is one of the most promising solutions for global water scarcity. State-of-the-art water desalination devices combining solar harvesting and heat localization for evaporation using nanomaterials still suffer from several issues in energy efficiency, long-term performance, salt fouling, light blocking, and clean water collection in real-world applications. To address these issues, this work devises plasma-enabled multifunctional all-carbon nanoarchitectures with on-surface waterways formed by nitrogen-doped hydrophilic graphene nanopetals (N-fGPs) seamlessly integrated onto the external surface of hydrophobic self-assembled graphene foam (sGF). The N-fGPs simultaneously transport water and salt ions, absorb sunlight, serve as evaporation surfaces, then capture the salts, followed by self-cleaning. The sGF ensures effective thermal insulation and enhanced heat localization, contributing to high solar-vapor efficiency of 88.6 ± 2.1%. Seamless connection between N-fGPs and sGF and self-cleaning of N-fGP structures by redissolution of the captured salts in the waterways lead to long-term stability over 240 h of continuous operation in real seawater without performance degradation, and a high daily evaporation yield of 15.76 kg m−2. By eliminating sunlight blocking and guiding condensed vapor, a high clean water collection ratio of 83.5% is achieved. The multiple functionalities make the current nanoarchitectures promising as multipurpose advanced energy materials

    Characteristics of Flight Delays during Solar Flares

    Full text link
    Solar flare is one of the severest solar activities on the sun, and it has many important impacts on the near-earth space. It has been found that flight arrival delays will increase during solar flare. However, the detailed intrinsic mechanism of how solar flares influence the delays is still unknown. Based on 5-years huge amount of flight data, here we comprehensively analyze the flight departure delays during 57 solar flares. It is found that the averaged flight departure delay time during solar flares increased by 20.68% (7.67 min) compared to those during quiet periods. It is also shown that solar flare related flight delays reveal apparent time and latitude dependencies. Flight delays during dayside solar flares are more serious than those during nightside flares, and the longer (shorter) delays tend to occur in the lower (higher) latitude airport. Further analyses suggest that flight delay time and delay rate would be directly modulated by the solar intensity (soft X-ray flux) and the Solar Zenith Angle. For the first time, these results indicate that the communication interferences caused by solar flares will directly affect flight departure delay time and delay rate. This work also expands our conventional understandings to the impacts of solar flares on human society, and it could also provide us with brand new views to help prevent or cope with flight delays.Comment: submitted to APJ

    The Effects of Space Weather on Flight Delays

    Full text link
    Although the sun is really far away from us, some solar activities could still influence the performance and reliability of space-borne and ground-based technological systems on Earth. Those time-varying conditions in space caused by the sun are also called space weather, as the atmospheric conditions that can affect weather on the ground. It is known that aviation activities can be affected during space weather events, but the exact effects of space weather on aviation are still unclear. Especially how the flight delays, the top topic concerned by most people, will be affected by space weather has never been thoroughly researched. By analyzing huge amount of flight data (~5X106 records), for the first time, we demonstrate that space weather events could have systematically modulating effects on flight delays. The average arrival delay time and 30-minute delay rate during space weather events are significantly increased by 81.34% and 21.45% respectively compared to those during quiet periods. The evident negative correlation between the yearly flight regularity rate and the yearly mean total sunspot number during 22 years also confirms such delay effects. Further studies indicate that the interference in communication and navigation caused by geomagnetic field fluctuations and ionospheric disturbances associated with the space weather events will increase the flight delay time and delay rate. These results expand the traditional field of space weather research and could also provide us with brand new views for improving the flight delay predications.Comment: submitted to science advance
    corecore