10,023 research outputs found

    Guided Filtering based Pyramidal Stereo Matching for Unrectified Images

    Get PDF
    Stereo matching deals with recovering quantitative depth information from a set of input images, based on the visual disparity between corresponding points. Generally most of the algorithms assume that the processed images are rectified. As robotics becomes popular, conducting stereo matching in the context of cloth manipulation, such as obtaining the disparity map of the garments from the two cameras of the cloth folding robot, is useful and challenging. This is resulted from the fact of the high efficiency, accuracy and low memory requirement under the usage of high resolution images in order to capture the details (e.g. cloth wrinkles) for the given application (e.g. cloth folding). Meanwhile, the images can be unrectified. Therefore, we propose to adapt guided filtering algorithm into the pyramidical stereo matching framework that works directly for unrectified images. To evaluate the proposed unrectified stereo matching in terms of accuracy, we present three datasets that are suited to especially the characteristics of the task of cloth manipulations. By com- paring the proposed algorithm with two baseline algorithms on those three datasets, we demonstrate that our proposed approach is accurate, efficient and requires low memory. This also shows that rather than relying on image rectification, directly applying stereo matching through the unrectified images can be also quite effective and meanwhile efficien

    Crystallization kinetics and glass-forming ability of bulk metallic glasses Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Be22.5 from classical theory

    Get PDF
    Due to their scientific significance and potential engineering applications, bulk metallic glasses are among the most intensively studied advanced materials. Understanding the glass-forming ability (GFA) of these metallic alloys is a long-standing subject. While a large number of empirical factors have been proposed to correlate with GFA of the alloys, a full understanding of GFA remains a goal to achieve. Since glass formation is a competing process against crystallization, we have performed a systematic analysis on the crystallization kinetics of two known best metallic glass-formers Pd40Cu30Ni10P20 (in at. %) and Zr41.2Ti13.8Cu12.5Ni10Be22.5 based on classical nucleation and growth theory. Our results show that there is a dramatic difference between the two alloys in their nucleation behavior although they possess comparable GFA. Particularly, an extremely sharp nucleation peak (~10^18/m^3 s) is found for Pd40Cu30Ni10P20 around 632 K with a very small half maximum width of 42 K, implying that this alloy is an excellent candidate for nanocrystallization studies. Moreover, we have also found that the GFA of these alloys can be calculated to a high accuracy and precision based on the classical theory, suggesting that the classical theory may be sufficient to account for glass formation mechanism in these metallic alloys

    Mott-Superfluid Transition for Spin-Orbit Coupled Bosons in One-Dimensional Optical Lattices

    Get PDF
    We study the effects of spin-orbit coupling on the Mott-superfluid transition of bosons in a one-dimensional optical lattice. We determine the strong coupling magnetic phase diagram by a combination of exact analytic and numerical means. Smooth evolution of the magnetic structure into the superfluid phases are investigated with the density matrix renormalization group technique. Novel magnetic phases are uncovered and phase transitions between them within the superfluid regime are discussed. Possible experimental detection are discussed.Comment: 5 pages, 4 figure

    Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper

    Get PDF
    We report the unusual glass-forming ability (GFA) of a family of Cu-based alloys, Cu46Zr47–xAl7Yx (0<x<=10, in at. %), and investigate the origin of this unique property. By an injection mold casting method, these alloys can be readily solidified into amorphous structures with the smallest dimension ranging from 4 mm up to 1 cm without detectable crystallinity. Such superior GFA is found primarily due to the alloying effect of Y, which lowers the alloy liquidus temperature and brings the composition closer to a quaternary eutectic. Other beneficial factors including appropriate atomic-size mismatch and large negative heat of mixing among constituent elements are also discussed

    Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper

    Get PDF
    The shear viscosity of liquid copper is studied using nonequilibrium molecular-dynamics simulations under planar shear flow conditions. We examined variation of viscosity as function of shear rate at a range of pressures (ca. 0 - 40 GPa). We analyzed these results using eight different phenomenological models and find that the observed non-Newtonian behavior is best described by the Powell-Eyring (PE) model: eta(gamma)=(eta(0)-eta(infinity))sinh(-1)(tau gamma)/(tau gamma)+eta(infinity), where gamma is the shear rate. Here eta(0) (the zero-shear-rate viscosity) extracted from the PE fit is in excellent agreement with available experimental data. The relaxation time tau from the PE fit describes the shear response to an applied stress. This provides the framework for interpreting the shear flow phenomena in complex systems, such as liquid metal and amorphous metal alloys
    • …
    corecore