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We study the effects of spin-orbit coupling on the Mott-superfluid transition of bosons in a one-dimensional
optical lattice. We determine the strong-coupling magnetic phase diagram by a combination of exact analytic and
numerical means. Smooth evolution of the magnetic structure into the superfluid phases is investigated with the
density matrix renormalization group technique. Other magnetic phases are seen and phase transitions between
them within the superfluid regime are discussed. Possible experimental detection is discussed.
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Introduction. Recent progress in cold atom physics has
made it possible to use Raman lasers to generate a synthetic
spin-orbit coupling for both bosonic [1-6] and fermionic
[7-10] atoms. When combined with optical lattices, it has been
pointed out that in addition to the standard spin-conserving
tunneling between nearest-neighbor lattice sites, an additional
spin-flip term is generated. In the limit of strong lattice confine-
ment this leads to the so-called Dzyaloshinskii-Moriya (DM)
exchange interaction, as well as anisotropic couplings [11-13].
In those works it was shown that these terms generate a
wealth of magnetic phases for the case of two-dimensional
optical lattices. Other work has emphasized the role that
magnetic order (or phase order) plays in the Mott-superfluid
transition [13-15].

So far, however, only one-dimensional (“Rashba -+
Dresselhaus™) spin-orbit coupling has been realized in exper-
iments [1-10] and it is therefore of interest to investigate the
corresponding limit of the model studied in Refs. [11-13].
Additionally, by restricting our attention to one spatial dimen-
sion we can go beyond the mean-field results described in
those works. In particular, the question of how the magnetic
order from the strong-coupling limit evolves through the
Mott-superfluid transition can be studied with the numeri-
cally exact density matrix renormalization group (DMRG)
method [16,17].

The one-dimensional Hamitonian is of the following
form [13]:

1
H = —t Z(V/:Rijl/fj + HC) + 5 Z Uﬂﬁ/agﬂajﬂ,aiﬂ/aiﬂ,
(ij) iBp
ey

where 1//5T = (aJT,aL) and ajﬂ creates a boson with spin § =
1,4 atsite i. The hopping matrix has the form R;; = cos o £
i sin aoy, along the ££ direction, respectively. The diagonal
terms of R describe spin-conserving hopping while its off-
diagonal terms describe spin-flipping hopping between nearest
neighbors. To simplify the discussion, weset Upy = Uy = U
and Uy, = U4 = AU, as in Ref. [13]. The parameter « is
determined by the ratio of the wave vector kg, describing the
momentum transfer from the Raman lasers to the wave vector
of the optical lattice ko, @ = 7 (ksoc/ ko) [11,12].

Magnetic phases in the Mott insulator. In the limit when
both U,AU > ¢, one can perform second order perturbation
theory and obtain an effective spin Hamiltonian describing the
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low energy dynamics in the Mott insulating states. From the
original boson degrees of freedom, we write local spin opera-
tors atsitei as (h = 1)5; = Lal Gopaip, where s = (0,,0,,0,)
are the Pauli matrices. In the case of a one-dimensional optical
lattice with unit filling, the explicit form of the effective spin
Hamiltonian is given by [13] (after rotating around the % axis
by an angle %)

cos(2
n (2a)

¥y
. i8] - (A = Ds;'s;

4¢* [cos(2a) .
Hmag e S S

(i)

+ %Sl“s; + sin(2oc)(sfs; - slzvs}‘)i|. )
The term proportional to sin(2w) is the so-called
Dzyaloshinskii-Moriya term [18,19] and can be written gener-
allyas D - (5; x § ), witha DM vector D = sin(2a)3. A similar
Hamiltonian with the DM term has been proposed to describe
certain quasi-one-dimensional antiferromagnets; for example,
copper benzoate [20], as suggested originally in Ref. [21].
In these materials, the ratio of the possible DM interaction
to the exchange interaction energy scale is very small (see
Ref. [22], and references therein). In Hy,g, this ratio can be
tuned arbitrarily by changing the parameter « which is easily
implemented by adjusting the intensity or polarization of the
Raman lasers [1-10].

The general spin Hamiltonian Hy,,, for arbitrary o and A
cannot be solved exactly. In the following, we discuss a few
special cases where the magnetic Hamiltonian equation (2) can
be dealt with analytically. From these limits, we map out of the
phase diagram of the magnetic Hamiltonian, as well as the ele-
mentary excitations around stable phases. We also confirm the
phase diagram with DMRG calculations. For symmetry rea-
sons, we only have to consider 0 < o < % For @ = 0 (no DM
interactions), Hp,, is the standard X X Z model. In this limit,
when A < 1, Hp,, has a paramagnetic ground state, while for
A > 1, it describes a ferromagnet along the § direction. We
now address three limits that can be solved even for « # 0.

(1) When A = 1, Hp,, reduces to

42 . 1
Hpgg = — cos(Za)F Z |:sixs; + sl:ys; + Cos(2a)sizs§
(ij)
+ tan(Za)(sj‘s; - slysj‘)i| 3)
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FIG. 1. (Color online) Excitation spectrum E (k) of Hemion N
the limit A — oo. For o = én,%n, the spectrum becomes gapless
and corresponds to the transition to the gapless xy-chiral state.
For o < é]‘[, the system is a y ferromagnet and for o > %rr, ay

antiferromagnet; both are gapped.

First we make the following transformation: §[+ =

exp(—i@,-sz)s;r exp(if;s;) = exp(—i@,-)sf, where sl.+ =5, +
isy is the spin-raising operator, while 57 = s7 [23]. Choosing
0,11 — 6; = —2a, the Hamiltonian reduces to an isotropic
ferromagnetic Heisenberg model in terms of the §; spins for any
o. Thatis, H,ﬁﬁ; = 4’2[”‘ G +s s + 5757]. The ground state
is a ferromagnet and the elementary exc1tat1ons are spin waves
with quadratic dispersion. This translates, for the original
spins, to a spiral state with wave vector 2« along the chain.
2) When A — 00, Hy,, takes a particularly simple form:
Hily = =412 cos2a)s)'s) + sinQa)(sts) — s7's¥)]. While
this Ham1lton1an cannot be transformed to another solved spin
model, it can be solved by 1ntroduc1ng Jordan-Wigner (JW)
fermions [24] ¢; and c isi =3 ]_[]<l — 2c}cﬂ,~)(c,- + cil) and

siy = 5 <l(l 2cjc_,~)(c, — ci). The magnetic Hamiltonian
transforms into a free fermion Hamiltonian Hiepion that can
be conveniently written in the Nambu form as

e ey A® [
errmron = Z[Ckvc—k] |:A*(k) —6(—]() CT_k ) (4)

k>0

where A(k) =i cos(2a)sin k and e(k) = —cos(k 2a). In
terms of \IJT [c}:,c ), Hiermion = Zk>0\lf H(k)V,, with
Hk) = Ho(k)I + Zi:x,m H;(k)é;, where I is the 2-by-2
identity matrix and &y, , are the Pauli matrices. Ho(k) =
—sin 2« sin k, H,(k) =0, H,(k) = —cos 2« sin k, and
‘H.(k) = —cos 2« cos k. The spectrum of fermion modes is
given by E1(k) = —sin(2«) sin k & | cos(2c)|. As shown in
Fig. 1, the critical values for & where the spectrum E (k)
becomes gapless are givenby o = én, 871 and this is confirmed
by the DMRG calculations. For o < 871, the system is a
ferromagnet, while for o > §7r itis a y antiferromagnet. Both
phases are gapped. In the 1ntermed1ate region,
it is in the xy-chiral phase with gapless excitations.

The Hamiltonian equation (4) describes p-wave pairing
in one dimension, analogous to the Kitaev model [25].
The Hamiltonian obeys the following symmetry: Hk) =
—oxﬂ(—k)*ox and belongs to the ‘“‘D” symmetry class,
characterized by a Z, invariant [26]. In the special case when

7T<Ol<;7'[
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FIG. 2. (Color online) Phase diagram of the effective spin model
Hpnge in the A-a plane. Five different phases are obtained. For A < 1,
one obtains paramagnetic phases (PM) and a ferromagnetic phase
along the Z direction (Z-FM). For A > 1, there are three phases: a
ferromagnet along the j direction (y-FM), an antiferromagnet along
the § direction (y-AFM), and the xy-chiral phase. The phase boundary
between Z-FM and xy chiral are given by the straight line A = 1. A
few representative points are marked on the phase diagram and their
corresponding correlation functions are presented in Figs. 3 and 4.

o= 0,5, it reduces to the standard Kitaev model. What is
particularly interesting in this case is that the gap-closing
transition for the JW fermions in the limit A — oo faithfully
describes the finite A > 1 magnetic transitions shown in Fig. 2.

(3) When o =2, Hyl = — 4 [Lsis? 4 (sis? — s?sD.
This is a one-dimensional Ising model with DM 1nteractions
and has been studied in the literature [27]. It has two phases:
for A > 1, the DM term dominates and the system is in
a chiral phase in which the spin spirals around the Z axis
along the chain. We refer to this as the chiral xy magnet.
For 1 < 1, the ferromagnetic term dominates and the system
is in a ferromagnetic state, pointing along the Z direction.
The ferromagnet has the usual Ising twofold ground state
degeneracy.

The full strong-coupling magnetic phase diagram is pre-
sented in Fig. 2. To distinguish between different phases,
we have made use of the following set of order parameters:
the gaps A, = E, — Ey, measuring the energy gap between
the nth excited state and the ground state [49]; the spin-spin
correlation function S”(i,j) = (s y) the chiral correlation
function A (i, j) = (A]AT), where y =x,y,z and A] =
evr(st'st — st st descrrbmg the chirality of the spins
in the ground state. Furthermore, we have calculated the
entanglement entropy Sg = —trpa In pa [28], where p, is the
reduced density matrix, corresponding to half of the chain. At
the transition point, we expect Sg to be maximal [28-33].

There are five different magnetic phases obtained within
the DMRG calculations [34]. For A < 1, we determine the
phase boundary between the paramagnetic (PM) state and
the ferromagnetic state along the Z axis (Z-FM) by locating
the maximal values of Sg in the A-a plane, as shown in
Fig. 3(a), where we plot Sg as a function of « for various
values of A. In the inset, the value of o, corresponding to the
maximal Sg is plotted for fixed values of A and for different
system sizes and extrapolation to infinite system size is taken
to identify the transition point. In Fig. 3(b), we have also
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FIG. 3. (Color online) (a) Entanglement entropy Sg as a function
of « for various values of A, calculated with system size L = 200
and open boundary condition. The peak positions o, determine
the phase transition points. The inset shows the finite size scaling of
omax- (b) Gaps A, = E, — Ey vs 1/L for the representative points
of the PM (o = 0.027, A = 0.3) and 3-FM (@ = 0.257, A = 0.3)
regimes. (c) Spin-spin correlation function S” (i, j) in the xy-chiral
phase. Note that S*¥(7, j) oscillates due to the chiral nature of the
phases. (d) Chiral correlations .A” (i, j) in the xy-chiral phase. The
only nonzero component is .4%(i, j). Both (c) and (d) are calculated
with o = 0.257, A = 1.5, L = 200 and open boundary condition.

calculated the gap for various values of & (A = 0.3). The phase
boundary obtained from the vanishing of A, is consistent with
that from the maximal entanglement entropy. For A > 1, one
finds three different phases: ferromagnetic along y ($-FM),
antiferromagnetic along $ (y-AFM), and the xy-chiral state in
between. We calculate the chiral correlator A (i, j), y = x,y,2
and define the asymptotic value A" = limyi_ o AY (i, ).
The xy-chiral phase is characterized by a nonzero value of
A?. As an example, we show in Figs. 3(c) and 3(d) how the
spin-spin correlation function SY (i, j) and chiral correlation
function A (i, j) depend on |i — j| for @ = %n and A = 1.5.
We note that S*(i, j) = S”(i, j) oscillates and their envelope
function decays algebraically. For A” (i, j), we find only one
of its components, A%(i, j), is nonzero and remains a constant
in the chiral states. We finally note that the phase boundary
between the Z-FM and xy-chiral phase is the straight line at
A = 1 as shown before.

Mott-superfluid transition. We now discuss how the mag-
netic ordering in the Mott insulating state evolves into the
superfluid state as one increases the hopping amplitude . A
similar question has been discussed in the two-dimensional
case [ 13] with the conclusion that there is a smooth evolution of
the magnetic correlations across the Mott-superfluid transition
within mean-field theory (MFT). However, the question of
how they match the magnetic structure in the weak-coupling
superfluid phases is left undiscussed, due to limited applica-
bility of MFT. In the one-dimensional case considered here,
the situation is similar but can be studied essentially exactly.
To characterize the superfluid state, we make use of the same
set of correlation functions SY (i, j) and A" (i, j) defined for
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the strong-coupling regime, but now written in terms of the
original boson operators.

To gain insight, let us first consider the weak-coupling
limit, U — 0. There are two degenerate minima in the single-
particle spectrum, located at k = «. The corresponding
spinor wave functions are equal superpositions of spin-up
and spin-down components, Wy (x) = exp(+iax)(l, £i) at
k = %o, respectively. There are only two types of superfluid
states, corresponding to different magnetic structures in the
weak-coupling limit [35-44]. (a) For A > 1, the superfluid
state is an equal superposition of the k = f« states and
the order parameter has the form ({(a,¢),{(ax;)) o (cos ax, —
sin ax), which corresponds to spin rotating around the ¥
axis with wave vector 2. This is the xy-chiral phase after
rotating around £ by 7. In this limit, the chiral correlation
A%(i,j) is independent of the separation between i and j
and is a constant of magnitude sin(2«)/16, where the factor
16 comes from the normalization of the spin s = % (b)
For A < 1, however, the weak-coupling superfluid breaks Z,
symmetry by selecting one of the single-particle minima. In
this case, the superfluid state is a ferromagnet along the Z
direction (after rotating around £ by 77 /2), consistent with the
magnetic order in the Mott phase and confirmed with DMRG
calculations.

With increasing U, however, other magnetic phases ($-FM,
$-AFM for A > 1, and PM for A < 1) emerge in the superfluid
phase, which connect smoothly to those in the Mott insulating
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FIG. 4. (Color online) (a) Phase diagrams for Mott insulator-
superfluid transitions at unit filling with o = 0.06r, A = 1.5 (9-
FM), « = 0.447, A = 1.5 (3-AFM), and o = 0.257, A = 1.5 (xy
chiral). Different magnetic structures only slightly modify the Mott-
superfluid transition boundary. The inset shows the magnetic phase
transition between $-FM and xy-chiral phases within the superfluid
regime. The inset shows the magnetic phase transition between y-FM
and xy-chiral phases within the superfluid regime, « = 0.087, A =
1.5. (b) Comparison of various correlation functions in the superfluid
(t/U = 0.5) and Mott insulating phases (t/U = 0.1). We note the
smooth evolution of the magnetic structure across the phase transition.
(¢) The saturated value of the chiral correlation function A? decreases
with increasing value of /U, and in this particular case, saturates to
a value - = 0.625 for & = Z. The system length for the DMRG

16 4°
calculation is L = 32.
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phase. We first determine the phase boundaries of the Mott-
superfluid transition. Let us define two chemical potentials
s =EN+1)—E(N)and u_ = E(N) — E(N — 1) for a
fixed system size. When the chemical potential u equals 14
or u_, where the phase transition occurs, the quasiparticle
or quasihole excitation energy is zero. In Fig. 4(a), we
show the phase diagram in the u —¢/U plane for different
values of o with A = 1.5. In the $-FM phase (o = 0.067)
and y-AFM phase (o = 0.447), the phase boundaries are
essentially identical within our numerical precision. For the
xy-chiral state (¢ = 0.25m), however, the phase boundary is
slightly, but consistently pushed to higher chemical potential.
To compare explicitly the magnetic structures in the Mott and
superfluid regimes, we plot in Fig. 4(b) various correlation
functions for t/U = 0.1 (Mott regime, solid markers) and
t/U = 0.5 (superfluid regime, hollow markers) for various
values of @ with A = 1.5. It can be readily observed that apart
from quantitative changes in the magnitudes of the correlation
functions, both AY(i,j) and S”(i,j) have the same spatial
dependence in the Mott and superfluid phases. In Fig. 4(c),
the asymptotic value of the chiral correlation function A® is
plotted as a function of /U for o = }171. We note that the
chiral correlation decays as one increases ¢/ U, and saturates
towards the weak-coupling value 1/16, as we determined
above.

To determine the magnetic phase transitions within the
superfluid phase for unit filling, we define n( to be the maximal
amplitude of the one-body density matrix (aja ajo) that decays
algebraically and calculate the chiral order parameter .A°.
Here we choose o = 0.087, A = 1.5, closer to the y-FM
and xy-chiral phase boundary. In the inset of Fig. 4(a), we
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observe, with increasing ¢/ U, first a second order transition
point t/U ~ 0.15 from the Mott to the superfluid phase and
later, at 1 /U =~ (.31, a first order phase transition to the chiral
superfluid phase, consistent with the weak-coupling phase
U— 0.

Conclusions. We have shown that spin-orbit coupling
substantially modifies the Mott insulating phase, resulting
in a host of magnetic phases (paramagnetic, ferromagnetic,
antiferromagnetic, and chiral magnetic). We have discussed
how these phases evolve smoothly into the superfluid and,
in particular, have shown the existence of a chiral superfluid
state in which the phase of the order parameter rotates along
the one-dimensional chain. Phase transitions between different
magnetically ordered superfluid states are discussed, and we
have shown that the transition between the $-FM superfluid
(with no weak-coupling analog) and the xy-chiral superfluid
is first order.

To detect the magnetic structures in either the Mott or
superfluid phases, one can make use of the optical Bragg
scattering technique [45] and in sifu microscopy which can
detect lattice-resolved hyperfine states [46—48]. The chiral
superfluid can also be identified from measurements of the
spin-resolved momentum distributions.

Note added. Recently, we became aware of the similar
DMRG calculations of [49-52]. Our results and theirs agree
for the parameter regimes where they overlap.
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