14 research outputs found

    Revisiting the Design Patterns of Composite Visualizations

    Full text link
    Composite visualization is a popular design strategy that represents complex datasets by integrating multiple visualizations in a meaningful and aesthetic layout, such as juxtaposition, overlay, and nesting. With this strategy, numerous novel designs have been proposed in visualization publications to accomplish various visual analytic tasks. These well-crafted composite visualizations have formed a valuable collection for designers and researchers to address real-world problems and inspire new research topics and designs. However, there is a lack of understanding of design patterns of composite visualization, thus failing to provide holistic design space and concrete examples for practical use. In this paper, we opted to revisit the composite visualizations in VIS publications and answered what and how visualizations of different types are composed together. To achieve this, we first constructed a corpus of composite visualizations from IEEE VIS publications and decomposed them into a series of basic visualization types (e.g., bar chart, map, and matrix). With this corpus, we studied the spatial (e.g., separated or overlaying) and semantic relationships (e.g., with same types or shared axis) between visualizations and proposed a taxonomy consisting of eight different design patterns (e.g., repeated, stacked, accompanied, and nested). Furthermore, we analyzed and discussed common practices of composite visualizations, such as the distribution of different patterns and correlations between visualization types. From the analysis and examples, we obtained insights into different design patterns on the utilities, advantages, and disadvantages. Finally, we developed an interactive system to help visualization developers and researchers conveniently explore collected examples and design patterns

    Zero-Energy-Device for 6G: First Real-Time Backscatter Communication thanks to the Detection of Pilots from an Ambient Commercial Cellular Network

    Full text link
    Ambient backscatter communication technology (AmBC) and a novel device category called zero-energy devices (ZED) have recently emerged as potential components for the forthcoming 6th generation (6G) networks. A ZED communicates with a smartphone without emitting additional radio waves, by backscattering ambient waves from base stations. Thanks to its very low consumption, a ZED powers itself by harvesting ambient light energy. However, the time variations of data traffic in cellular networks prevents AmBC to work properly. Recent works have demonstrated experimentally that a backscatter device could be detected by listening only ambient pilot signals (which are steady) instead of the whole ambient signal (which is bursty) of 4G. However, these experiments were run with a 4G base station emulator and a bulky energy greedy backscatter device. In this paper, for the first time, we demonstrate real-time AmBC on the field, with Orange commercial 4G network as ambient source and Orange Zero-Energy Device.Comment: 3 pages, 7 figures , 6Get202

    Capacity for heat absorption by the wings of the butterfly Tirumala limniace (Cramer)

    Get PDF
    Butterflies can directly absorb heat from the sun via their wings to facilitate autonomous flight. However, how is the heat absorbed by the butterfly from sunlight stored and transmitted in the wing? The answer to this scientific question remains unclear. The butterfly Tirumala limniace (Cramer) is a typical heat absorption insect, and its wing surface color is only composed of light and dark colors. Thus, in this study, we measured a number of wing traits relevant for heat absorption including the thoracic temperature at different light intensities and wing opening angles, the thoracic temperature of butterflies with only one right fore wing or one right hind wing; In addition, the spectral reflectance of the wing surfaces, the thoracic temperature of butterflies with the scales removed or present in light or dark areas, and the real-time changes in heat absorption by the wing surfaces with temperature were also measured. We found that high intensity light (600–60,000 lx) allowed the butterflies to absorb more heat and 60−90° was the optimal angle for heat absorption. The heat absorption capacity was stronger in the fore wings than the hind wings. Dark areas on the wing surfaces were heat absorption areas. The dark areas in the lower region of the fore wing surface and the inside region of the hind wing surface were heat storage areas. Heat was transferred from the heat storage areas to the wing base through the veins near the heat storage areas of the fore and hind wings

    Bacillus cereus Isolated From Vegetables in China: Incidence, Genetic Diversity, Virulence Genes, and Antimicrobial Resistance

    Get PDF
    Bacillus cereus is a food-borne opportunistic pathogen that can induce diarrheal and emetic symptoms. It is widely distributed in different environments and can be found in various foods, including fresh vegetables. As their popularity grows worldwide, the risk of bacterial contamination in fresh vegetables should be fully evaluated, particularly in vegetables that are consumed raw or processed minimally, which are not commonly sterilized by enough heat treatment. Thereby, it is necessary to perform potential risk evaluation of B. cereus in vegetables. In this study, 294 B. cereus strains were isolated from vegetables in different cities in China to analyze incidence, genetic polymorphism, presence of virulence genes, and antimicrobial resistance. B. cereus was detected in 50% of all the samples, and 21/211 (9.95%) of all the samples had contamination levels of more than 1,100 MPN/g. Virulence gene detection revealed that 95 and 82% of the isolates harbored nheABC and hblACD gene clusters, respectively. Additionally, 87% of the isolates harbored cytK gene, and 3% of the isolates possessed cesB. Most strains were resistant to rifampicin and β-lactam antimicrobials but were sensitive to imipenem, gentamicin, ciprofloxacin, kanamycin, telithromycin, ciprofloxacin, and chloramphenicol. In addition, more than 95.6% of the isolates displayed resistance to three kinds of antibiotics. Based on multilocus sequence typing, all strains were classified into 210 different sequence types (STs), of which 145 isolates were assigned to 137 new STs. The most prevalent ST was ST770, but it included only eight isolates. Taken together, our research provides the first reference for the incidence and characteristics of B. cereus in vegetables collected throughout China, indicating a potential hazard of B. cereus when consuming vegetables without proper handling

    CFD Prediction of Ship Seakeeping and Slamming Behaviors of a Trimaran in Oblique Regular Waves

    No full text
    The main hull encounters waves at first and causes waves to break, when trimarans are subject to the slamming in head waves. At this moment, emergence phenomena of side hulls will not occur. Thus, the slamming study of trimarans in oblique waves presents further practical significance. In this study, a CFD method is used for trimaran seakeeping and slamming analysis. An overset grid technique is adopted to simulate ship motions in waves. Firstly, to further verify the present method, a series of verification and validation studies is conducted. Then, the motion responses and slamming pressure with different control parameters, such as forward speed and ship heading angle, are calculated and discussed. The comparative results indicate that the seakeeping and slamming behaviors of trimarans differ significantly from those of conventional monohull ships. Finally, severe bow slamming and green water in oblique waves are also observed and investigated, which should be given enough attention during ship design and evaluation

    Dynamic Response Analysis of a Bulk Carrier by Nonlinear Hydroelastic Method

    No full text
    With increasing demands for huge ship dimensions and the wide use of high-strength steel, the influence of slamming and elastic structure on structural strength cannot be ignored. Therefore, in this paper, a three-dimensional (3D) nonlinear hydroelastic theory is introduced, in which the nonlinear hydrostatic restoring force caused by instantaneous wetted surface as well as slamming force are taken into consideration, and the bending moments with/without slamming effects are calculated, respectively. Numerical simulations of the dynamic response of a flexible hull at different speeds are carried out using the finite element analysis software MSC/PATRAN. By comparison with the results of classical beam theory, the accuracy of the dynamic analysis method is studied. Finally, the dynamic response method is compared with the quasi-static method and classical beam theory. By analyzing and quantifying the influence of forward speed and nonlinear factors on structural responses, the reasonable applicable conditions for different methods are discussed, which can be used as reference in the structure design of bulk carriers

    NR2F2 Regulates Cell Proliferation and Immunomodulation in Whartons’ Jelly Stem Cells

    No full text
    (1) Background: Wharton’s Jelly stem cells (WJ-MSCs) are multipotent mesenchymal stem cells that can proliferate rapidly and have low immunogenicity. Therefore, WJ-MSCs have gained considerable attention in the fields of immunomodulation and disease treatment and have entered clinical trials for the treatment of various diseases. Therefore, it is crucial to study the underlying mechanisms of WJ-MSCs proliferation, immune regulation, and disease treatment. Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) is a transcription factor that is involved in the regulation of many different genes. However, it remains unknown how NR2F2 regulates stem cell identity in WJ-MSCs. (2) Methods: We used RNAi technology to knock down NR2F2 in WJ-MSCs, and studied the regulatory role of NR2F2 in WJ-MSCs by MTT, flow cytometry, RNA-seq, and other methods. We also utilized a co-culture system in which NR2F2-depleted WJ-MSCs with MH7A and HCT116/HepG2 were used to investigate the role of NR2F2 in immunomodulation and the inhibition of cancer cell growth. (3) Results: NR2F2 knockdown resulted in decreased expressions of Cyclin D1 and CDK4, slower cell proliferation, and increased expressions of IL6 and IL8. Furthermore, Cyclin D1, CDK4, and inflammatory factors were increased in human rheumatoid fibroblast-like synoviocyte line MH7A if co-cultured with NR2F2 depleted WJ-MSCs. In addition, we observed increased p53, decreased BCL-2, and increased cell apoptosis in liver cancer cell line HepG2 if co-cultured with NR2F2-depleted WJ-MSCs. (4) Conclusions: NR2F2 not only plays an important role in the cell cycle and immune regulation of WJ-MSCs but also has potential effects on the WJ-MSCs treatment of related diseases

    In-band Ambient FSK Backscatter Communications Leveraging LTE Cell-Specific Reference Signals

    No full text
    | openaire: EC/H2020/101015956/EU//Hexa-XA long term evolution (LTE) signal is ubiquitously present, which make it an attractive signal source for ambient backscatter communications (AmBC). In this paper, we propose a system that uses LTE cell-specific reference signals (CRSs) transmitted by a base station as an ambient source and channel estimator at the user equipment (UE) as an AmBC receiver. One of the challenges in AmBC is direct path interference (DPI): The direct signal from the transmitter to the receiver is several orders of magnitude stronger than the scattered path. We propose a solution that operates withing the original LTE band. In order to mitigate the DPI, the backscatter device (BD) performs a frequency shift keying (FSK) modulation that introduces an artificial Doppler shift to the channel which is larger than the natural Doppler but still small enough such that it can be tracked by the channel estimator at the UE. We demonstrate the feasibility of the proposed system by Proof-of-Concept implementation and compare its performance against the simulation results. Measurement results show that we could achieve bit error probabilities less than 10-2 with ambient LTE signal having SNR of 5 dB operating on 486 MHz band having 7.68 MHz bandwidth.Peer reviewe

    Demo: UE Assisted Ambient Internet of Things in LTE Downlink, Energy Autonomous

    No full text
    <p>Ambient power enabled Internet of Things (AIoT) defined 3GPP is promoted as the next generation communication standard, 6G. AmBC is a communication technique aiming to zero-energy device (ZED) for massive Machine Type Communications (mMTC). This paper suggests a user equipment (UE) assisted AIoT, based on Long-Term Evolution (LTE) Cell specific Reference Signal (CRS) and channel estimation. We demonstrated an energy autonomous ambient backscatter device (BD) and a real-time AmBC reader. This paper's results indicates that AmBC can reach the bit error rate (BER) to 10^-3 order of magnitude in practice. The proposed AmBC system is a promising candidate of AIoT solution.</p&gt

    Correlation between sedentary activity, physical activity and bone mineral density and fat in America: National Health and Nutrition Examination Survey, 2011–2018

    No full text
    Abstract We compared the relationship between sedentary activity (SA) and physical activity (PA) with bone mineral density (BMD) and body fat percentage in the United States and found a negative association between SA and BMD and a positive association with body fat percentage. A positive association between PA and BMD and a negative association with body fat percentage. SA and PA are associated with changes in skeletal parameters and body fat percentage, and we aimed to investigate and compare the relationship between SA, PA and bone mineral density (BMD) and body fat percentage in men and women. We assessed the relationship between SA, PA and BMD and body fat percentage in 9787 Americans aged 20–59 years (mean age 38.28 ± 11.39 years) from NHANES 2011–2018. BMD and body fat percentage were measured by dual-energy X-ray bone densitometry (DXA). We used multiple linear regression models to examine the relationships between SA, PA and lumbar spine BMD and total body fat percentage, adjusted for a large number of confounding factors. After adjusting for race/ethnicity, age, alcohol and smoking behavior, body mass index (BMI), total protein, blood calcium, blood uric acid, cholesterol, blood phosphorus, vitamin D, and blood urea nitrogen, SA was negatively associated with lumbar spine BMD (β = − 0.0011 95% CI − 0.0020 to − 0.0002, P = 0.022), and SA was positively associated with total fat percentage (β = PA was positively associated with lumbar BMD (β = 0.0046 95% CI 0.0010 to 0.0082, P = 0.012) and there was a negative association between PA and body fat percentage (β = − 1.177 95% CI − 1.326 to –1.027, P < 0.001). Our results show that physical activity is a key component of maintaining bone health in both men and women and is strongly associated with lower body fat percentages. Sedentary activity is negatively correlated with bone density and is strongly associated with an increase in body fat percentage. Healthcare policy makers should consider reducing sedentary activity and increasing physical activity when preventing osteoporosis and obesity
    corecore