72 research outputs found

    Crop residue management and fertilization effects on soil organic matter and associated biological properties

    Get PDF
    Returning crop residue may result in nutrient reduction in soil in the first few years. A two-year field experiment was conducted to assess whether this negative effect is alleviated by improved crop residue management (CRM). Nine treatments (3 CRM and 3 N fertilizer rates) were used. The CRM treatments were (1) R0: 100 % of the N using mineral fertilizer with no crop residues return; (2) R: crop residue plus mineral fertilizer as for the R0; and (3) Rc: crop residue plus 83 % of the N using mineral and 17 % manure fertilizer. Each CRM received N fertilizer rates at 270, 360, and 450 kg N ha−1 year−1. At the end of the experiment, soil NO3-N was reduced by 33 % from the R relative to the R0 treatment, while the Rc treatment resulted in a 21 to 44 % increase in occluded particulate organic C and N, and 80 °C extracted dissolved organic N, 19 to 32 % increase in microbial biomass C and protease activity, and higher monounsaturated phospholipid fatty acid (PLFA):saturated PLFA ratio from stimulating growth of indigenous bacteria when compared with the R treatment. Principal component analysis showed that the Biolog and PLFA profiles in the three CRM treatments were different from each other. Overall, these properties were not influenced by the used N fertilizer rates. Our results indicated that application of 17 % of the total N using manure in a field with crop residues return was effective for improving potential plant N availability and labile soil organic matter, primarily due to a shift in the dominant microorganisms

    Cattle manure loadings and legacy effects on copper and zinc availability under rainfed and irrigated conditions

    Get PDF
    Long-term cattle manure applications build up nutrient pools and can lead to trace element enrichments in soils. The objectives of this study were to evaluate copper (Cu) and zinc (Zn) loadings in the soil during continuous annual cattle manure applications and determine the time required for soil to return to its pre-manure available Cu and Zn levels after manure is discontinued. The manure application rates were 0, 30, 60, and 90 Mg·ha−1 for rainfed and 0, 60, 120, and 180 Mg·ha−1 (wet weight) for irrigated plots. Although manure was applied for 45 yr in some plots, applications were terminated in one subset of treatments after 14 yr and in another subset after 30 yr to study legacy effects after 31 and 15 yr, respectively. Soil samples were collected in the fall of 2003, 2008, 2013, and 2018 and analyzed for available Cu and Zn. Crops were grown in all years continuously with Cu and Zn concentrations measured in both silage and grains harvested. The regression model developed using data collected suggests long legacy effects with recovery time to pre-manure levels ranging from 10 to 20 yr for Cu and 23 to 41 yr for Zn at irrigated and 10–24 for Cu and 21–32 yr for Zn under rainfed, respectively. Long-term applications of cattle manure could lead to accumulation of Cu and Zn, creating long-lasting legacy effects in soils with the increased environmental risk of leaching to groundwater."Funding for this research was provided by Agriculture and Agri-Food Canada (J-000251)."https://cdnsciencepub.com/doi/10.1139/cjss-2020-012

    Crop residue management and fertilization effects on soil organic matter and associated biological properties

    Get PDF
    Returning crop residue may result in nutrient reduction in soil in the first few years. A two-year field experiment was conducted to assess whether this negative effect is alleviated by improved crop residue management (CRM). Nine treatments (3 CRM and 3 N fertilizer rates) were used. The CRM treatments were (1) R0: 100 % of the N using mineral fertilizer with no crop residues return; (2) R: crop residue plus mineral fertilizer as for the R0; and (3) Rc: crop residue plus 83 % of the N using mineral and 17 % manure fertilizer. Each CRM received N fertilizer rates at 270, 360, and 450 kg N ha−1 year−1. At the end of the experiment, soil NO3-N was reduced by 33 % from the R relative to the R0 treatment, while the Rc treatment resulted in a 21 to 44 % increase in occluded particulate organic C and N, and 80 °C extracted dissolved organic N, 19 to 32 % increase in microbial biomass C and protease activity, and higher monounsaturated phospholipid fatty acid (PLFA):saturated PLFA ratio from stimulating growth of indigenous bacteria when compared with the R treatment. Principal component analysis showed that the Biolog and PLFA profiles in the three CRM treatments were different from each other. Overall, these properties were not influenced by the used N fertilizer rates. Our results indicated that application of 17 % of the total N using manure in a field with crop residues return was effective for improving potential plant N availability and labile soil organic matter, primarily due to a shift in the dominant microorganisms

    On-site Composting for Biocontainment and Safe Disposal of Infectious Animal Carcasses and Manure in the Event of a Bioterrorism Attack

    Get PDF
    The purpose of this project is to develop composting methods that can be applied on farms or at other sites to ensure the biocontainment of infected poultry or livestock carcasses and their manure in the event of a bioterrorism attack employing foreign animal disease viruses. The methods developed in this project will be efficient at destroying viruses and degrading carcasses to earth-like material. Methods will also be developed to detect and identify volatile organic compounds contained in off-gases produced during composting. An assessment will then be made of the key chemical categories and specific compounds in the gases released. Studies on the gases released and on the breakdown of animal DNA will aim to determine whether this information could be used to predict the overall safety of the compost for disposal on land. Standards will also be developed to determine virus survival under defined composting conditions

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (ξAWHC), while some studies show the ability to substantially increase ξAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (ξFC) and permanent wilting point (ξPWP). New pedotransfer functions had predictions of ξAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on ξAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in ξAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in ξAWHC is about double previous estimates. Calcareous soils had an increase in ξAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience
    • 

    corecore