4 research outputs found

    Presentation_1_Nicotinamide adenine dinucleotide supplementation drives gut microbiota variation in Alzheimer’s mouse model.pdf

    No full text
    Alzheimer’s disease (AD) is the most common neurodegenerative disease. Growing evidence suggests an important role for gut dysbiosis and gut microbiota-host interactions in aging and neurodegeneration. Our previous works have demonstrated that supplementation with the nicotinamide adenine dinucleotide (NAD+) precursor, nicotinamide riboside (NR), reduced the brain features of AD, including neuroinflammation, deoxyribonucleic acid (DNA) damage, synaptic dysfunction, and cognitive impairment. However, the impact of NR administration on the intestinal microbiota of AD remains unknown. In this study, we investigated the relationship between gut microbiota and NR treatment in APP/PS1 transgenic (AD) mice. Compared with wild type (WT) mice, the gut microbiota diversity in AD mice was lower and the microbiota composition and enterotype were significantly different. Moreover, there were gender differences in gut microbiome between female and male AD mice. After supplementation with NR for 8 weeks, the decreased diversity and perturbated microbial compositions were normalized in AD mice. This included the species Oscillospira, Butyricicoccus, Desulfovibrio, Bifidobacterium, Olsenella, Adlercreutzia, Bacteroides, Akkermansia, and Lactobacillus. Our results indicate an interplay between NR and host-microbiota in APP/PS1 mice, suggesting that the effect of NR on gut dysbiosis may be an important component in its therapeutic functions in AD.</p

    Additional file 2: Figure S2. of Abnormal circadian oscillation of hippocampal MAPK activity and power spectrums in NF1 mutant mice

    No full text
    In vivo recording in CA1 demonstrates alterations in hippocampal rhythmic oscillations and firing rates in Nf1 +/− mice. a The local field potentials (LFPs) recordings in CA1(WT mice). First trace- unfiltered LFPs, second trace- alpha oscillations (filtered 7–12 Hz). b Histograms show the averaged power spectral density of the neuronal rhythmic oscillations (alpha). Data are expressed as mean ± SEM (WT, n = 5; Nf1 +/− , n = 5). Two-way analysis of variance with repeated measures and post hoc Bonferroni tests was used to evaluate differences in local field potential power spectrum density in day and night recordings in Nf1 +/− and WT groups. ***p < 0.001. (PDF 212 kb
    corecore